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Announcements

Today is our last quiz

Assignments  is due tonight
 will be due Apr 22

P03A
P04A

Quizzes

The  is on Monday, Apr 28, at 4:00 pm
in 244 Cathedral of Learning

final examFinal exam

OMETs I will drop your lowest assignment if the
response rate is 80% or higher.
Current response rate: 63%
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https://pitt-biosc1540-2025s.oasci.org/assessments/projects/protein-structure/03A/
https://pitt-biosc1540-2025s.oasci.org/assessments/projects/cadd/04A/
https://pitt-biosc1540-2025s.oasci.org/assessments/final/


After today, you should have a better understanding of

Quiz 04
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Please put away all materials
as we distribute the quiz

Fill out the cover page, and do not start yet

Sit with an empty seat between you and
your neighbors for the quiz
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https://www.clockfaceonline.co.uk/clocks/digital/

Quiz ends around 9:55 am

When you are finished, please hold on to your quiz and feel free
to doodle or write anything on the last page
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https://www.clockfaceonline.co.uk/clocks/digital/


After today, you should have a better understanding of

Ligand-based drug design
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Structural insight into a disease is a privilege

Phenotypic drug screening involves
testing compounds on an organism
level to identify potential leads

Example: Drug screening on an
antibiotic-resistant bacterial strain
to identify potential new leads
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LBDD uses known compounds to guide drug discovery

Ligand-based drug design (LBDD) relies on the
properties of known bioactive compounds

LBDD does not require the structure of the target
protein, making it useful when this is unknown

Assumption: Similar structures can lead to
similar—hopefully improved—biological effects

Motivation: If we find compounds with little bioactivity,
we can use LBDD to find compounds with similar
chemical features to improve specific outcomes
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Key differences between structure- and
ligand-based drug design

Structure-Based Drug Design:

Requires 3D structure of the target protein.
Uses the binding site structure to model
potential interactions.
Often employs docking and molecular
simulations.

Ligand-Based Drug Design:

Requires no structural information of the target.
Uses the chemical structure and activity of
known ligands as guides.
Relies on molecular similarity rather than direct
binding predictions.
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Chemical space exploration is still challenging,
and now we need to identify similar compounds
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After today, you should have a better understanding of

Molecular properties
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Molecular properties are used to predict how a compound
behaves in the body, before any biological testing

These properties help prioritize molecules for synthesis and testing by
estimating solubility, permeability, bioavailability, and toxicity.
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LogP quantifies lipophilicity, which affects absorption,
distribution, and membrane permeability

LogP is the logarithm of a compound’s partition
coefficient between octanol and water.

High LogP values indicate lipophilic (fat-loving)
molecules that may permeate membranes more easily,
but also may have poor solubility and toxicity risks.

Low LogP values mean hydrophilicity
(water-loving), which helps with solubility
but may hinder permeability.

logP = log10 (
[solute]water

[solute]octanol )
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Molar refractivity (MR) measures polarizability
and molecular volume

It is also used as a proxy for molecular
volume—important in steric compatibility
with binding pockets.

MR depends on molecular size
and the type of atoms present.

Higher MR suggests greater
polarizability, which can enhance
binding via dispersion forces.
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Topological Polar Surface Area (TPSA) predicts
membrane permeability

Lower TPSA values (<90 Å²) suggest
good potential for crossing the
blood-brain barrier (BBB).

It is calculated from the surface area of
oxygen and nitrogen atoms (and their
attached hydrogens).

Molecules with TPSA >140 Å² typically
show poor oral bioavailability.
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Rotatable bonds contribute to molecular flexibility

Drug-like molecules often have fewer
than 10 rotatable bonds.

Fewer rotatable bonds generally mean better
oral bioavailability and metabolic stability.

Highly flexible molecules may pay a greater
entropic cost upon binding, reducing affinity.
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While molecular properties provide crucial insight, they do
not fully describe a molecule’s structure or function

Two compounds can have similar LogP, TPSA, and molecular
weights—but behave very differently due to subtle structural
variations (e.g., isomers or stereochemistry).

Properties are global summaries, but molecular
similarity often depends on local structural features like
functional groups, ring systems, or atom connectivity.
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After today, you should have a better understanding of

Molecular similarity
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Quantifying molecular similarity is challenging

Which group of molecules should we
pursue for increased bioafinity?

Group A Group B

With your neighbors, determine how you would
choose the group of molecules to pursue.

Suppose we performed an experimental high-throughput
screen and identified these potential leads
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Molecular descriptors numerically
encode chemical properties

Computed with SwissADME

LogP 4.08 4.30

Measures lipophilicity, which influences a molecule's ability to cross cell membranes and affects absorption and bioavailability.

Molar Refractivity 156.23 134.72

Relates to polarizability and electron cloud distribution, affecting intermolecular interactions and binding affinity.

TPSA  122.76 Å² 102.93 Å²

Estimates the molecule’s ability to form hydrogen bonds, impacting solubility and permeability across biological membranes.

Molecular weight 565.09 g/mol 475.97 g/mol

Indicates the overall size of the molecule, impacting drug distribution and elimination rates in the body.
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Num. rotatable bonds   10 8

Reflects molecular flexibility, which can influence binding affinity and oral bioavailability.

http://www.swissadme.ch/index.php


Molecules can have similar properties, with slight
structural differences causing widely different functions

Computed with SwissADME

Dopamine                   is a naturally occurring
neurotransmitter in the brain and
interacts with dopamine receptors

Molecular weight

LogP

Molar Refractivity 

TPSA  
Num. rotatable bonds   

Molecular weight

LogP

Molar Refractivity 

TPSA  

SMILES

Phenylephrine                          is a synthetic compound that
acts as a vasoconstrictor by stimulating
alpha-adrenergic receptors

Simple descriptor comparisons are not sufficient for
computing molecular similarity

Phenylephrine
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167.21 g/mol

0.65

47.01

52.49 Å²
3

CNC[C@@H](C1=CC(=CC=C1)O)O

Dopamine

153.18 g/mol

0.46

42.97

66.48 Å²
2

C1=CC(=C(C=C1CCN)O)O

http://www.swissadme.ch/index.php


Molecular fingerprints encode structural information

Phenylephrine

Dopamine

Extended Connectivity Fingerprints (ECFPs) encode
structural features into numerical representations

10011000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000001000000000000000000001000000
00000000000000000000000000000000000000000000000000001000000000001000000000000000000000000000000000000000000000000010000000000000
00000000000000000000000000100000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000100000000000000000000000000000000000000000000000000001000000000000100000000000000000001000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000001000000000000100100000000000000000000000000001000000001000000100000000000000000000000000
00000100000000000000001000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000001001001000000

10011000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000100000000000000000000000000000000000000010000000100000010000000000000000000000000010
00000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000010000000000000000000000
00000000000000000000000000000000000010001000000000100101000000000000000000000000000000000100000000000000000000000000000000000000
00000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000001001000000000

from rdkit import Chem
from rdkit.Chem import rdFingerprintGenerator
fmgen = rdFingerprintGenerator.GetMorganGenerator(
  radius=3, fpSize=1024,
  atomInvariantsGenerator=rdFingerprintGenerator.GetMorganFeatureAtomInvGen()
)
mol = Chem.MolFromSmiles("C1=CC(=C(C=C1CCN)O)O")
print(fmgen.GetFingerprint(mol))

1
2
3
4
5
6
7
8

How do we compute this?
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For each heavy atom (i.e., not H), hash atom-specific properties

ID =0 hash(Z ,V ,C ,R ,…)i i i i

Z

V

C

R

Atomic number

Valence

Formal charge

Ring membership

ID0

Iteration 0
identifier

id10_iter0 = hash((6, 3, 0, 1)) 
print(id10_iter0)  # 7468469475583712974

Let's look at carbons 6 and 10

Because of the same element and connectivity,
they have the same ID0

id6_iter0 = hash((6, 3, 0, 1)) 
print(id6_iter0)  # 7468469475583712974

Hash functions are used to encode chemical information
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"Encoding" is a computational term for transforming
information in a numerical format for computers



For each additional iteration of n, incorporate the hashes
of connected atoms that are n bonds away

id10_iter1 = hash(( 
    1, 7468469475583712974, # ID for atom 10 
    1, 901285887933171736,  # ID for atom 5 
    2, 7468469475583712974  # ID for atom 9 
)) 
print(id10_iter1)  # 9113858623660175530

id6_iter1 = hash(( 
    1, 7468469475583712974, # ID for atom 6 
    2, 901285887933171736,  # ID for atom 5 
    1, 901285887933171736   # ID for atom 7 
)) 
print(id6_iter1)  # -1070477880882296059

Each iteration encodes local chemical
information into each atom's ID

We can repeat the process for larger n,
which captures more chemical information
at a (small) computational cost

Repeat for all atoms while hashing n - 1 IDs

Next, encode the atom IDs that are exactly one bond away

Format: (IterationNumber, AtomID, BondOrder1, AtomID1, BondOrder2, AtomID2, ...)

24



We keep track of atom IDs at each iteration to encode
multiple "levels" of chemical information

# Iteration 0 
[-96873481, -5237400, -608624, -40896092, 13106358, 39304191, 
13106358, 39304191, 39304191, 39304191, 18495798, 18495798] 
 
# Iteration 1 
[-12887828, 34836456, -82428984, -76182021, 57441373, 18535308, 
36698099, -16062189, -71082609, -16062189, -13803757, -35226747] 
 
# Iteration 2 
[-30242937, -22342045, -3701095, -83323106, -81401022, -79585126, 
259777, -18164777, -83853893, -9624634, -63890015, -86218719] 
 
# Iteration 3 
[24482285, -67056973, -1049934, 58183281, 9686245, 65319696, 
-89546467, 90525418, -96278682, -31838946, -41820336, -42202112]

# Iteration 0 
[39304191, 39304191, 13106358, 13106358, 39304191, 13106358, 
-608624, -608624, -2248911, 18495798, 18495798] 
 
# Iteration 1 
[-16062189, -16062189, -54942758, -54942758, 18535308, 80518135, 
-46276084, 85303560, -4225841, -13803757, -13803757] 
 
# Iteration 2 
[45202524, -32527659, 91315393, -86313403, 74663225, 43056615, 
-92441264, 61456743, 35268850, -86729888, -86729888] 
 
# Iteration 3 
[17051553, -83857497, -10864101, 42020134, 84228020, 88509243, 
53634925, 58427327, 85169475, -62345869, -23012595]

Similar structural features will share atom IDs
until our iteration starts incorporating different structural features
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Atom IDs are encoded into a bit array

We can get a collection of atom IDs, but how would we rapidly
compare molecules with different number of atoms?

We use bit arrays, which are fixed-length collections of ones and zeros 10101100

    10101100 
AND 11011010 
    -------- 
    10001000

11011010

This allows efficient operations

    10101100 
OR  11011010 
    -------- 
    11111110

Features that are in both molecules

Features that are in either molecules
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Converting atom IDs to bit arrays 

ecfp = [0, 0, 0, 0, ..., 0, 0, 0]

-1070477880882296059 % 1024 = 908

Decide on length of bit array, for example,
1024 and fill with zeros

Divide each atom ID by the length of the
array and determine the remainder

Set the value of the bit array at that index to 1 ecfp[908] = 1

10011000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000001000000000000000000001000000
00000000000000000000000000000000000000000000000000001000000000001000000000000000000000000000000000000000000000000010000000000000
00000000000000000000000000100000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000100000000000000000000000000000000000000000000000000001000000000000100000000000000000001000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000001000000000000100100000000000000000000000000001000000001000000100000000000000000000000000
00000100000000000000001000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000001001001000000

10011000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000100000000000000000000000000000000000000010000000100000010000000000000000000000000010
00000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000010000000000000000000000
00000000000000000000000000000000000010001000000000100101000000000000000000000000000000000100000000000000000000000000000000000000
00000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000001001000000000
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Tanimoto similarity compares the ECFPs
between two molecules

Using bit operations, we can compute similarity using Tanimoto

Tanimoto similarity =
a+ b− c

c

 is the number of bits set to 1 in vector A.
 is the number of bits set to 1 in vector B.
 is the number of bits set to 1 in both vectors A and B (the intersection).

a

b

c

This formula measures the ratio of the shared features to the total
number of unique features between two molecules.

a = len(fp1_bits) 
b = len(fp2_bits) 
c = len(fp1_bits & fp2_bits)

Molecular similarity: The concept that similar molecules often show similar biological effects.
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Tanimoto similarity ranges

Phenylephrine

Dopamine

How similar does ECFPs and Tanimoto
say these molecules are?
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Before the next class, you should

Submit 
Fill out your OMETs

P03A

Lecture 13B:
Cheminformatics -

Methodology

Lecture 13A:
Cheminformatics -

Foundations

Today Thursday
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https://pitt-biosc1540-2025s.oasci.org/assessments/projects/protein-structure/03A/

