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Announcements

César optional Python recitations are on Fridays
from 2 - 3 pm in L1 Clapp Hall
Please fill out the Canvas discussion for CBit 07

 is on Mar 18 and will cover  to Quiz 03 L06B L08B

Assignments  is due Mar 14
 will be published sometime this week

P02A
P02B

Quizzes

CBits
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https://canvas.pitt.edu/courses/291671/discussion_topics/1631394
https://pitt-biosc1540-2025s.oasci.org/assessments/quizzes/03/
https://pitt-biosc1540-2025s.oasci.org/lectures/06B/
https://pitt-biosc1540-2025s.oasci.org/lectures/08B/
https://pitt-biosc1540-2025s.oasci.org/assessments/projects/genomics/02A/
https://pitt-biosc1540-2025s.oasci.org/assessments/projects/transcriptomics/02B/


After today, you should have a better understanding of

Hypothesis testing for comparing gene expression
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Let's remember the big picture: We want
to quantify differences in gene expression

Differential gene expression quantifies
changes in gene expression levels between
different sample groups or conditions

We have been focused on quantifying
gene expression in quantities like
Transcripts Per Million (TPM)

Samples

Normal Cancerous
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We cannot rely on simple comparisons
when analyzing gene expression

Samples

Normal Cancerous
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TPM

We could technically directly compare
means between our different conditions

However, biological data are inherently noisy,
and observed differences may arise by chance

Examples of experimental biases (besides sample variation)

Sequencing depth: Higher depth could appear as higher
expression levels simply due to having more data

Batch effects: Processing sampling with different equipment,
reagents, times, etc. can show systematic differences



We need approaches that address these
sources of variation and noise

Samples

Normal Cancerous

TPM
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Statistical models can account for
variability and separate signal from noise

Hypothesis testing between statistical models
provides a quantitative way to compare conditions



Hypothesis testing in RNA-seq data

After fitting a statistical model, we need to perform hypothesis testing to see if
the difference in expression between conditions is statistically significant

Gene expression

Normal Cancerous

We reject the null hypothesis when our statistical test demonstrates that the
observed difference, if any, is unlikely to have happened by random chance 
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Null Hypothesis (H₀): There is no difference in gene
expression between the two conditions

Alternative Hypothesis (H₁): There is a significant
difference in gene expression between the conditions

We have two hypotheses:



The p-value is the probability of the null
hypothesis being true

What is the probability that any difference is either
(1) nonexistent or (2) due to random chance

Probability value (p-value):

The higher the p-value, the more our
model supports the null hypothesis

The lower the p-value, the more our model
supports the alternative hypothesis

Gene expression

Normal Cancerous

p ≈ 0.9999
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Gene expression

Normal Cancerous

p ≈ 0.00001



After today, you should have a better understanding of

Reliable statistical models for gene expression data

Binomial distribution
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To compute probabilities under H₀, we need
a model that describes expected variation

A statistical model describes how data is expected to behave if H₀ is true.

For example, a fair coin flip should result in a
normal distribution centered on 50% of each side

This is our statistical model that describes
our coin flip observations under H0

If we flip a coin 10 million times
and our distribution looks like this

We are probably flipping a weighted coin because our
observations do not match our H  statistical model0
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Gene expression data have unique challenges
that require specific statistical models
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The nature of count data

RNA-seq generates count data – the number of RNA
fragments that map to each gene

Gene expression

Normal Cancerous

Example: 573,282 TPM
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Discrete data requires us to use special statistical models

Data that can only take whole numbers
In RNA-seq, we measure the number of
transcripts, so the data are count-based
For example, you cannot have "half a transcript"

What is discrete data?



Binomial: A Simple Model for Discrete Counts

The Binomial distribution models the
number of successes in a fixed number
of independent trials, where each trial
has the same probability of success

n

k

P

p

P X = k =( ) p 1 − p
k! n− k !( )

n! k ( )n−k

Number of trials

Number of successes

Probability

Probability of success

RNA-seq analogy: Each read can be
considered a "trial," and the probability
that a read maps to a specific gene is the
"probability of success."

k

P
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After today, you should have a better understanding of

Reliable statistical models for gene expression data

Poisson distribution
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Challenge #1: The binomial distribution assumes that the
probability of success (p) is the same for every trial

For example, if I have 10 samples from cancerous cells, the binomial
distribution assumes they are perfect replicates with no biases

Ignoring sample-to-sample
variability can lead to

underestimating the true
uncertainty in the datan

k

P

p

P X = k =( ) p 1 − p
k! n− k !( )

n! k ( )n−k

Number of trials

Number of successes

Probability

Probability of success
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Challenge #2: High sequencing depth results in an
extremely large number of trials, posing both

computational and modeling challenges

When sequencing depth is high, n (the total number of reads) becomes very large

Factorials when n is large makes accurate calculations impractical

P X = k =( ) p 1 − p
k! n− k !( )

n! k ( )n−k
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Challenge #3: For many genes, the probability of
expression (p) is extremely low, further complicating

the use of the binomial distribution

With very low p, the expected number of successes (reads
mapping to a lowly expressed gene) is minuscule compared to n

P X = k =( ) p 1 − p
k! n− k !( )

n! k ( )n−k

Calculations with very small probabilities may lead
to numerical underflow/imprecise results
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Poisson distribution: A tractable model
for large discrete counts

The Poisson distribution is a statistical tool used to
model the number of events (i.e., counts) that
happen in a fixed period of time or space, where:

The events are independent of each other
Each event has a constant average rate (i.e.,
allows variation between events)

P X = k =( )
k!

λ ek −λ

λ Expected average of X

k Number of events or counts

P Probability
Assuming the constant average rate of success
allows some variation around the mean

I.e., sample variation and batch effects
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After today, you should have a better understanding of

Reliable statistical models for gene expression data

Negative binomial distribution
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Poisson distribution assumes mean and variance are equal

E[X] = k ⋅
k=0

∑
∞

P (X = k)The expected value (i.e., mean)

When k = 0, the term is zero= k

k=1

∑
∞

k!
λ ek −λ

= λe−λ

k=1

∑
∞

(k − 1)!
λk−1

k =
k!
λk

λ
(k − 1)!
λk−1

= λe−λ

j=0

∑
∞

j!
λj

j = k − 1Use

= λe ⋅−λ e =λ λ =
j=0

∑
∞

j!
λj

eλ

You don't need to understand these
derivations—just the outcome

= λ
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Poisson distribution assumes mean and variance are equal

Var(X) = E[X ] −2 E[X]( )2

E[X(X − 1)] = k(k −
k=2

∑
∞

1)
k!

λ ek −λ
E[X ] =2 E[X(X − 1)] + E[X]

When k = 0 or 1, the term is zero

k(k − 1) =
k!
λk

(k − 2)!
λk

= k(k −
k=2

∑
∞

1)
k!

λ ek −λ

You don't need to understand these
derivations—just the outcome

= e−λ

k=2

∑
∞

(k − 2)!
λk

= λ e2 −λ

j=0

∑
∞

j!
λjj = k − 2Use

= λ e ⋅2 −λ eλ=
j=0

∑
∞

j!
λj

eλ

= (λ +2 λ) − λ2

= λ

E[X] = Var(X) = λ

= λ2

If our variance is different
from our mean, our Poisson

model breaks down
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Parity plots with mean and variance show
deviations with Poisson distributions

Count mean

Count
variance

Mean = variance line

Higher counts typically
have a larger variance
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Overdispersion in RNA-Seq

Overdispersion: It happens when the variance in the data is larger than what is
predicted by simpler models (e.g., Poisson distribution)

Expected variance for Poisson-distributed data equals the mean: Variance=μ
Variance is often larger than the mean for RNA-Seq: Variance>μ

Overdispersion may reflect biological
variability between samples not captured
by the experimental conditions

Differences in RNA quality
sequencing depth,
biological factors like different cell types
within the same tissue
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Poisson distribution is unsuitable for RNA-
seq data because of high noise
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Negative Binomial distribution accounts for high dispersion

P (X = k) =
k! Γ( )

α
1

Γ(k + )
α
1 (

1 + αμ

1 ) α
1

(
1 + αμ

αμ )
k

Γ ⋅( ) Gamma function, which generalizes
the factorial to floats

k Observed number of counts 

μ Mean or expected value of counts

α
Dispersion parameter, controlling how
much the variance exceeds the mean

Var(X) = μ+ αμ2

If , the Negative Binomial
distribution reduces to the

Poisson distribution

α=0
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The challenge of zeros in RNA-seq data

RNA-seq data frequently contains zero counts for some
genes because not all genes are expressed under all conditions

Most statistical models account for variance,
but not that zeros can dominate counts

For example, if we have a high expected
mean with Poisson distribution we can

still have zeros or very low counts

In these circumstances, we have to
use zero-inflated models

We will ignore these for now
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After today, you should have a better understanding of

Fitting statistical models
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Likelihood quantifies the probability of the
observed data given a model

A higher product (or joint likelihood) means the model assigns a higher
probability to the observed data, indicating a better fit.

The likelihood of model parameters 
 given data  is defined as

θ

y

P (y , y ,… , y ∣θ) =1 2 n P (y ∣θ)
i=1

∏
n

i

L(θ) = P (y∣θ)

When individual data points 
 are independent, the joint probability is
calculated by multiplying their individual
probabilities:

y ,y ,…,y
1 2 n

Multiplying these probabilities aggregates the evidence from
each data point, providing a comprehensive measure of how

well the model with parameter  fits all the dataθ
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The log transformation simplifies
computation and interpretation

Makes differentiation easier for optimization

logL(θ) = logP (y ∣θ)
i=1

∑
n

iLog likelihood

Converts products into sums, reducing computational issues.
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Maximum Likelihood Estimation (MLE) finds the
parameters that maximize the log likelihood

At the optimum, the model parameters provide
the best explanation of the observed data.

=θ̂ arg logL(θ)
θ
max

Optimization problem

Bad fit

Good fit
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Before the next class, you should

Work on  (due Mar 14)P02A

Lecture 08B:
Differential gene expression -

Methodology

Lecture 08A:
Differential gene expression -

Foundations

Today Thursday
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https://pitt-biosc1540-2025s.oasci.org/assessments/projects/genomics/02A/

