

Computational Biology (BIOSC 1540)

Lecture 07B

Quantification

Methodology

Feb 20, 2025

Announcements

Assignments • P02A is due March 14

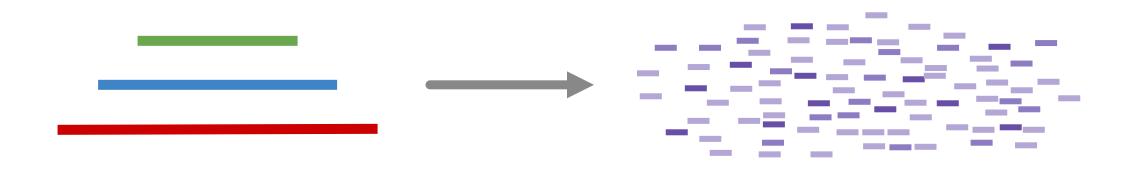
• Quiz 03 is on Mar 18 and will cover L06B to L08B

• César will provide optional Python recitations on Fridays from 2 - 3 pm (Located in Clapp Hall, room TBD).

RNA quantification problem formulation

The RNA quantification problem statement

Given the sequencing reads that were sampled from these transcripts



Transcriptome

Unknown quantity

Reads/Fragments

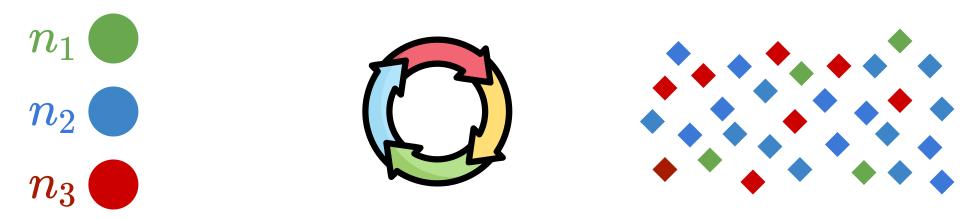
Experimental biases and errors

How many copies of each transcript were in my original sample?

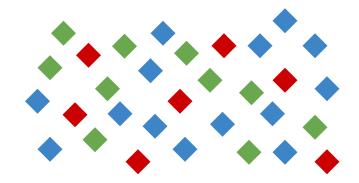
We need to maximize the probability that our generative model and parameters explain our observations

1. Estimate transcript abundance

2. Randomly sample *n* fragments



We iteratively optimize our transcript abundances until our generated reads look very similar to our observed reads

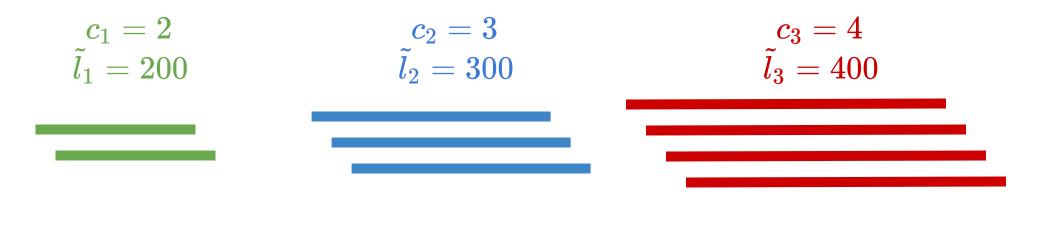


Generative models for RNA quantification

Salmon's mathematical definition of a transcriptome



Salmon's formulation of transcript abundance



So far, we have been talking about transcript fractions

$$f_i = rac{c_i}{\sum_j^M c_j}$$

$$\eta_i = rac{c_i ilde{l}_i}{\sum_j^M c_j ilde{l}_j} \quad \eta = egin{bmatrix} \eta_1 \ \eta_2 \ \eta_3 \end{bmatrix}$$

We can also take nucleotide fractions by taking into account the effective length of each transcript

This tells us how much of the total RNA pool comes from each transcript

I will explain the effective length later. For now, think of it as a "corrected" length

Converting to relative abundances

 $\tau_i \quad \begin{array}{l} \text{The transcript fraction normalizes} \\ \text{nucleotide fraction by the effective length} \end{array}$

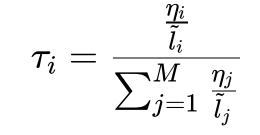
Adjusts for the fact that longer transcripts generate more reads

This gives the relative abundance of each transcript *i*

 $\mathrm{TPM}_i = au_i \cdot 10^6$

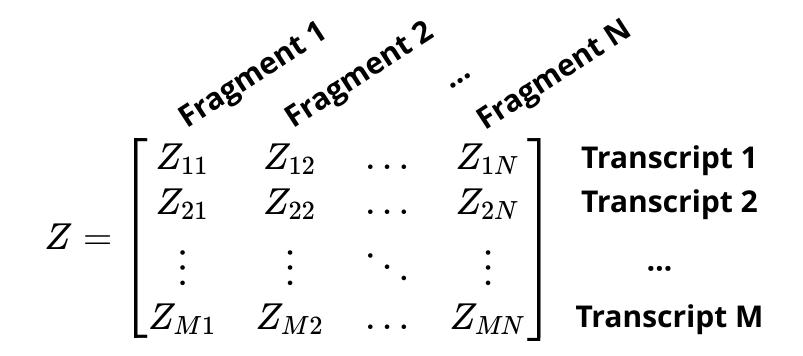
The **transcript fraction** tells us the proportion of total RNA molecules in the sample that come from transcript *i*

TPM is "Transcripts per million"



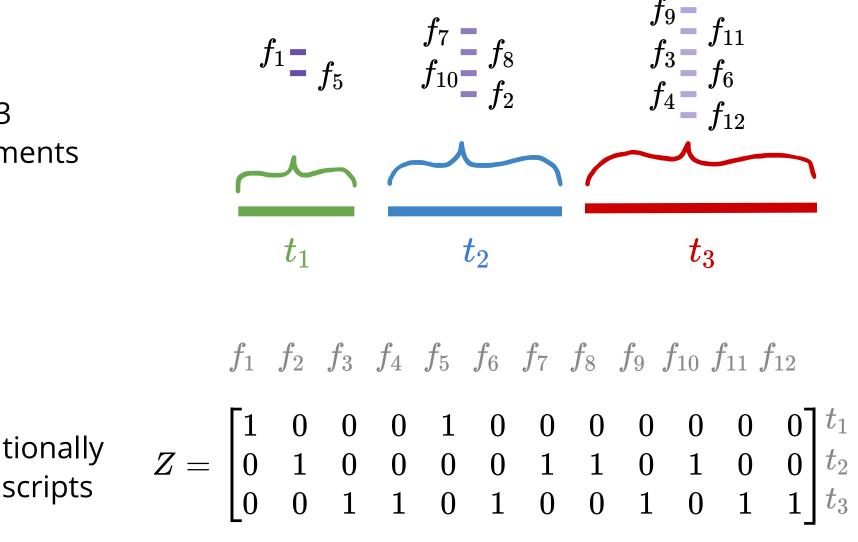
Transcript-Fragment Assignment Matrix

Z is a binary matrix (i.e., all values are 0 or 1) of *M* transcripts (rows) and *N* fragments (columns)



 $Z_{i,j} = 1$ if fragment j is assigned to transcript i

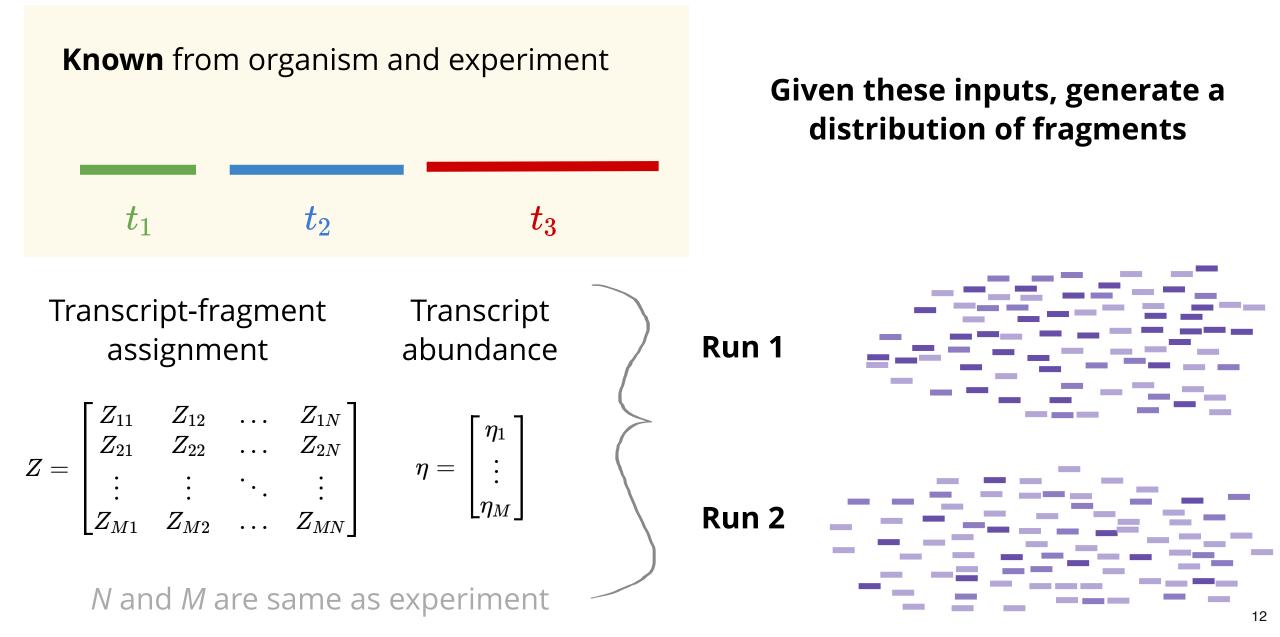
Z example



Suppose we have 3 transcripts and 12 fragments

Z is just how we computationally assign fragments to transcripts

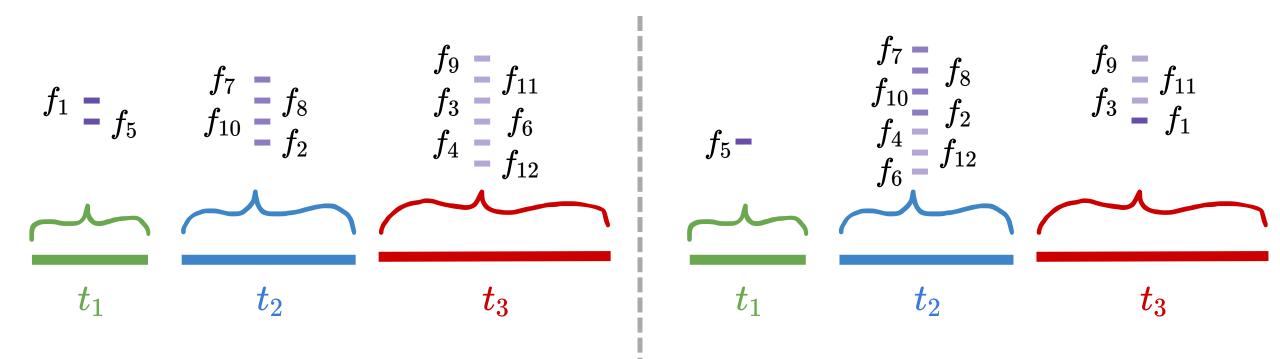
Generative model inference



Probability of observing the sequence fragments

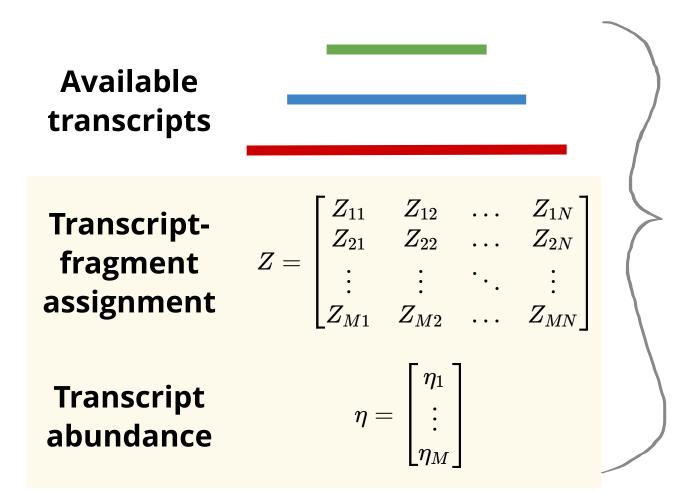
Which scenario is more likely, given our generative model?

We can use probabilistic methods to find parameters that explain our observed distirbution

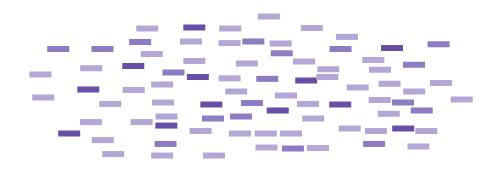


Probability of observing the sequenced fragments

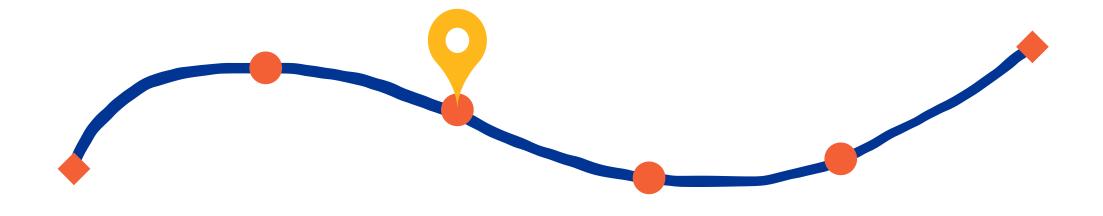
 $P\left(F|T,\eta,Z
ight)$



Given these **parameters**, how probable is it that our experiment generated these observed reads?



Optimize these values until we get the highest probability



Probability optimization instead of generation

Probability of observing the sequenced fragments

We can now compute the probability of observing: Set of fragments $\,F\,$

Given: Transcriptome T Transcript assignment Z Transcript abundance $~\eta$

 $P\left(F|\eta,Z,T
ight) = \prod_{j=1}^{N}\sum_{i=1}^{M}\eta_{i}P\left(f_{j}|t_{i}
ight)$

 $P\left(f_{j}|t_{i}
ight)$

Probability of observing fragment f_j

given that it comes from transcript t_i

This expression accounts for all possible transcripts a fragment might come from, weighted by how likely that fragment is to come from each transcript **Fragment probabilities**

 $P\left(f_{j}|t_{i}
ight)$

is a conditional probability that depends on the **position** of the fragment within the transcript, the **length** of the fragment, and any technical biases

In Salmon's quasi-mapping approach, this probability is approximated based on transcript compatibility rather than exact positions.

 $P(f_j|t_i) = P(\text{fragment length}, \text{position}, \text{GC content}, \ldots)$

Positional bias

Fragments that include transcript ends might be too short

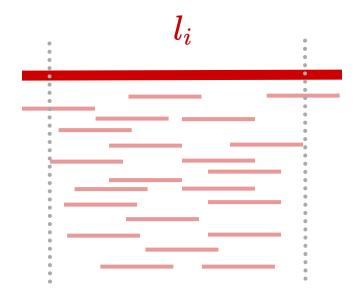
Fragments from central regions are more likely to be of optimal length for sequencing reads

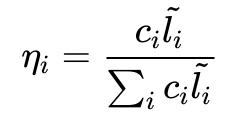
A transcript's **effective length** adjusts for the fact that fragments near the ends of a transcript are less likely to be sampled

$$ilde{l}_i = l_i - \mu_i \qquad \quad ilde{l}_i < l_i$$

Mean of the truncated empirical fragment length distribution

 μ_i





18

Probability maximization with inference

Two-phase inference in salmon

Inference refers to the process of estimating transcript abundances from observed RNA-seq reads using statistical models.

Salmon processes reads in **two stages**

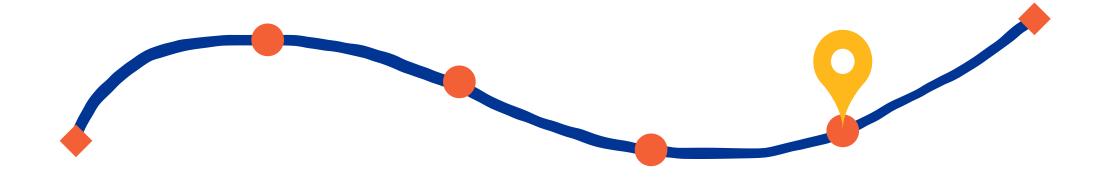
Online phase

Makes fast, initial estimates of transcript abundances as the reads are processed

Offline phase

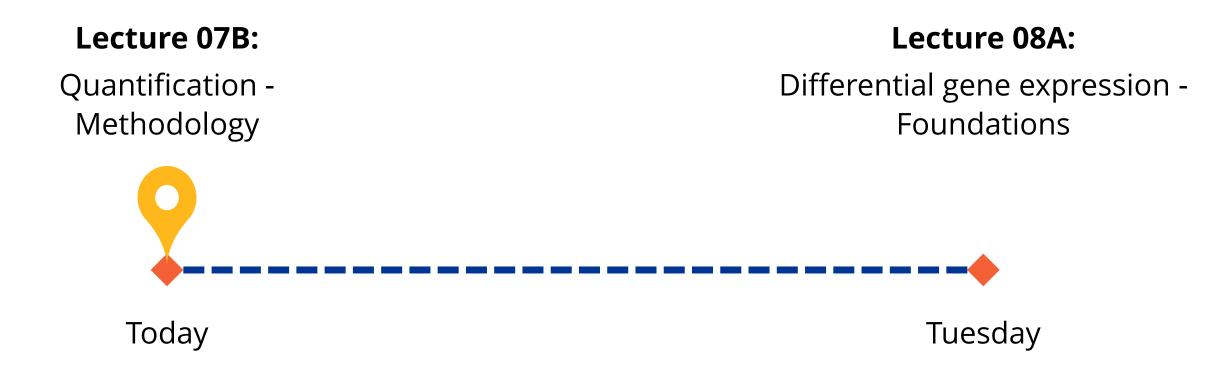
Refines these initial estimates using more complex optimization techniques

This two-phase approach balances **speed** (in the online phase) with **accuracy** (in the offline phase)



Methodology with a Python implementation

Before the next class, you should



• Work on P02A (due Mar 14)