
Computational Biology
(BIOSC 1540)

Feb 13, 2025

Lecture 06B

Read mapping

Methodology

1

Announcements

 expires on Feb 15
 expires on Feb 28

CByte 03
CByte 04

 is on Feb 18 and will cover lectures to Quiz 02 04A 06A

Assignments Assignment is due Friday (Feb 14)P01D

Quizzes

CBytes

ATP until the next reward: 653

Next reward: Checkpoint Submission Feedback

2

https://pitt-biosc1540-2025s.oasci.org/cbytes/03/
https://pitt-biosc1540-2025s.oasci.org/cbytes/04/
http://pitt-biosc1540-2025s.oasci.org/cbytes/04/
https://pitt-biosc1540-2025s.oasci.org/assessments/quizzes/02/
https://pitt-biosc1540-2025s.oasci.org/lectures/04A/
https://pitt-biosc1540-2025s.oasci.org/lectures/06A/
https://pitt-biosc1540-2025s.oasci.org/assessments/projects/genomics/01C/
https://pitt-biosc1540-2025s.oasci.org/cbytes/#advanced-training-points-atp

After today, you should have a better understanding of

The purpose of reference-based mapping

3

Understanding how we get our reads

Cells will transcribe these genes into mRNA (i.e., transcripts)

t1

t2

4

Suppose we have the following three coding (i.e., genes)
and non-coding regions with introns and exons

g2 g3g1

DNA

t3

t4

t5

t6

t7

t8

We collect, convert to complementary DNA, and then amplify

Understanding how we get our reads

Fragmentation and sequencing

t1

t2

5

t3

t4

t5

t6

t7

t8

FASTQ readsr , r ,… , r1 2 N

Each RNA-seq read represents a
small fragment of a transcript

Our purified sample

The Goal of Read Alignment is to Reconstruct
Gene Expression Patterns

By mapping reads to a reference genome or transcriptome, we can:

Identify which genes are active in a sample.
Measure the relative abundance of different transcripts.
Detect novel isoforms and alternative splicing events.

g2 g3g1

DNA

Reads r , r ,… , r1 2 N

6

Read mapping determines where in the genome did these reads originate from.

RNA-seq must account for alternative splicing

g2 g3g1

DNA

Reads r , r ,… , r1 2 N

7

Unlike DNA sequencing, RNA sequencing includes spliced transcripts.

Key problem: Reads from mRNA span exon-exon
junctions, but the genome contains introns.

Solution: Transcriptomic aligners must allow for
gapped alignments that bridge exon-exon junctions.

After today, you should have a better understanding of

Hash-based methods for handling introns

Activity

8

Read mapping exercise

Danny loved spotting shapes in the
clouds and had an entire journal filled
with sketches of dragons, castles, and
sailing ships. One day, he noticed a small
cloud following him, shifting to match
whatever he imagined. He tested it by
thinking of a giant ice cream cone; sure
enough, it transformed before his eyes.
Delighted, he ran home, wondering how
much fun he could have with a personal
cloud. His only concern was making sure
it didn’t rain inside his room.

Let's consider this short story as our genome
containing coding and non-coding regions

0. danclodrashi

The reads below were built by taking random
words, slicing three letters, and then

concatenating without spaces (all lowercase)

In groups, please work together
to determine which words were

used for your read

Be prepared to explain how you
approached the problem

"Danny clouds dragons ships"

1. entmagcretra

2. spomatwoncon

3. notgiasaibed

4. lovdrathirai

?

?

?

?

9

We could do maybe one or two in a few minutes

What about doing 30?

danclodrashi

lovshaentjou

spofilskecas

saionenotsma

clofolshimat

whaimatestthi

giaicecrecon

surenotratrig

befeyedelran

homwonmucfun couhavwitper

cloonlconmak

surdidraiins

danlovsposke

shajoufildra

cassaishiday

notclofolshi

matwhaimates

thigiaicecre

consurenotra rigbefeyedel

ranhomwonmuc

funcouhavwit

percloonlcon

maksurdidrai

insbeddanlov

sposhacloent

joufilskedra

casnotsmaclo

folshimathwa

10

We need to map millions of reads to our genome, so
how could we approach this computationally?

After today, you should have a better understanding of

Hash-based methods for handling introns

K-mer indexing

11

We can pre-compute k-mer locations of our story

Danny loved spotting shapes in the clouds and had an entire journal
filled with sketches of dragons, castles, and sailing ships [...]

We can chunk our story into k-mers and
store where in the story they occur

"dan": [0]
"ann": [1]
"nny": [2]

"clo": [35, 153, 382]
"lou": [36, 154, 383]
"oud": [37, 155, 384]

danny clouds, cloud, cloud

"ing": [17, 116, 165, 178, 233, 335, 412]

spotting, sailing, following, shifting,
thinking, wondering, making

We can store these k-mers and indices and then
use these to find potential sources

12

Mapping a read to our genome involves
checking where k-mers exist

Danny loved spotting shapes in the clouds and had an entire journal
filled with sketches of dragons, castles, and sailing ships [...]

 danclodrashi dan, clo, dra, shi

"dan": [0]

"clo": [35, 153, 382]

"dra": [92]

"shi": [120, 173]

clouds, cloud, cloud

danny

dragon

ships, shifting

Read

Genome

Query k-mers

Check if k-mers are in our
genome and the starting

index of that k-mer

This data structure is called a hash
table (i.e., dictionary in Python)

13

Hash tables link a key to a value

Keys represent a "label" we
can use to get information

Example: Phone book / Contacts list

Name

A "hash function" determines where to find
their number in our computer's memory

Number

14

TACGTACGATAGTCGACTAGCATGCATGCTACGTGCTAGCACGTATGCATGCATGCATGCC

Hashing our reference genome seeds our hash table with
k-mer locations

5-mers
TACGT, ACGTA, CGTAC, GTACG, . . .

Reference genome
0 10 20 30 40

TACGT

[0, 29]ACGTA

[1, 40]

k-mer location
in genomek-mer

h(k)

15

50 60

We hash our k-mer, and add the
starting index where that k-mer
occurs in our reference genome

Hashing our RNA-seq data provides quick lookups of our
reference genome

Query a k-mer read to get indices that
of possible reference genome locations

Reference genome

TACGTACGATAGTCGACTAGCATGCATGCTACGTGCTAGCACGTATGCATGCATGCA
0 10 20 30 40 50

Hash table
TACGT

[0, 29]ACGTA

[1, 40]

k-mer location
in genomek-mer

h(k)

16

After today, you should have a better understanding of

Suffix arrays for efficient substring searches

17

Hash-Based Alignment: Divide and Conquer

A "DNA dictionary" with quick lookup and direct access to potential matches

Pros

Easily parallelizable
Flexible for allowing mismatches
Conceptually simple

Cons

Large memory footprint for index
Can be slower for very large genomes

"dan": [0]

"clo": [35, 153, 382]

"dra": [92]

"shi": [120, 173]

18

Suffix trees compress all k-mers into a single data structure

NA

NA$$

4 2

0

13

5

A

$ NA

$ NA$

19

Root node
(Start here)

BANANA$

A suffix tree is used to find starting index of suffix

Example: Where does
 start?NANA$ Index 2.

Edge

Node

Leaf node

Split point

Suffix start index

Next part of suffix

Nowhere.
Where does start?AANA

Note: We use $ to represent the end of a string

Suffix arrays are memory-efficient alternatives to trees

BANANA$Requires less memory, but is also less powerful

1. Create all suffixes

BANANA$
ANANA$
NANA$

NA$
ANA$

A$
$

20

2. Sort lexicographically
3. Store starting indices in original string

BANANA$
ANANA$

NANA$
NA$

ANA$
A$
$6

5
3
1
0
4
2

$ comes before
letters for sorting

String
index Suffix

After today, you should have a better understanding of

Burrows-Wheeler Transform (BWT) string compression

21

We are dealing with enormous datasets

Reference genome sizes

Homo sapiens: 3,200,000,000 bp
Mus musculus: 2,700,000,000 bp
Drosophila melanogaster: 140,000,000 bp
Saccharomyces cerevisiae: 12,000,000 bp

(~3.2 GB if using u8)

RNA-seq data
Illumina RNA-seq is around 120 GB

Contextualization

The best movie ever
is only 1.2 GB

Most computers have 8 - 12 GB of RAM

22

https://knowledge.illumina.com/instrumentation/general/instrumentation-general-reference_material-list/000001508

Compression reduces the amount of
data we have to store

"Alex keeps talking and talking and talking
and talking and eventually stops."Suppose we need to store this string:

How could we store this
string and save space?

"talking and talking and
talking and talking and" "talking and" 4=

"Alex keeps talking and talking
and talking and talking and

eventually stops."
"Alex keeps" + "talking and" 4

+"eventually stops."

Run-length encoding

23

Not all strings have repeats

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec iaculis
risus vulputate dui condimentum congue. Pellentesque habitant morbi

tristique senectus et netus et malesuada fames ac turpis egestas.

Can you find any repeats?

How can we force repeats?
Sorting the letters does!

.aaaaaaaaaaaabbcccccccccddddddeee
eeeeeeeeeeeeeeeeeeeefggghiiiiiiiiiiiiiiiil
lllllllmmmmmmmmnnnnnnnnnnoooo
oooopppppqqrrrrrrrssssssssssssssssst

ttttttttttttttttttuuuuuuuuuuuuuuuv

a12b2c9d6e23f1g3h1i16l8m8
n10o8p5q2r7s17t19u15v1

 Run-length encoding

24

Sorting lexicographically forces
repeats, but loses original data

The Burrows-Wheeler Transform (BWT) is a way to
sort our strings without losing the original data

(And also search through it!)

Developed by Michael Burrows and David Wheeler in 1994
25

Basic concept of BWT

1. Append a unique end-of-string (EOS) marker to the input string.
2. Generate all rotations of the string.
3. Sort these rotations lexicographically.
4. Extract the last column of the sorted matrix as the BWT output.

BANANA$
ANANA$B
NANA$BA
ANA$BAN
NA$BANA
A$BANAN
$BANANA

26

BANANA$
ANANA$B

NANA$BA

ANA$BAN

NA$BANA

A$BANAN
$BANANA

ANNB$AA

BANANA

First column is more compressible,
but we lose context and reversibility

(We can also get first column by
sorting the output)

After today, you should have a better understanding of

FM-index for efficient substring searches

27

Enhancing BWT for Rapid Searching

ABRACADABRA$

ABRACADABR

$ABRACADAB

BRA$ABRACA

BRACADABRA

CADABRA$AB

DABRA$ABRA

RA$ABRACAD

RACADABRA$

ADABRA$ABR

ABRA$ABRAC

A$ABRACADA

ACADABRA$A

$

A

A

A

A

A

B

B

C

D

R

R

A

R

D

$

R

C

A

A

A

A

B

B

28

ABRACADABR

$ABRACADAB

BRA$ABRACA

BRACADABRA

CADABRA$AB

DABRA$ABRA

RA$ABRACAD

RACADABRA$

ADABRA$ABR

ABRA$ABRAC

A$ABRACADA

ACADABRA$A

$

A0

A1

A2

A3

A4

B0

B1

C0

D0

R1

R0

A0

R0

D0

$

R1

C0

A1

A2

A3

A4

B1

B0

The backward search algorithm
efficiently finds occurrences of a

pattern in a text using the LF-mapping

BWT matrix Number

Number characters with the
number of times they have appeard

F-column L-column

ABRACADABRA$ABRA

$
A0
A1
A2
A3
A4
B0
B1
C0
D0

R1

R0

A0
R0
D0
$

R1
C0
A1
A2
A3
A4

B1

B0

A R

ABRACADABR
$ABRACADAB
BRA$ABRACA
BRACADABRA
CADABRA$AB
DABRA$ABRA
RA$ABRACAD
RACADABRA$
ADABRA$ABR
ABRA$ABRAC
A$ABRACADA
ACADABRA$A 29

$
A0
A1
A2
A3
A4
B0
B1
C0
D0

R1

R0

A0
R0
D0
$

R1
C0
A1
A2
A3
A4

B1

B0

R B

ABRACADABR
$ABRACADAB
BRA$ABRACA
BRACADABRA
CADABRA$AB
DABRA$ABRA
RA$ABRACAD
RACADABRA$
ADABRA$ABR
ABRA$ABRAC
A$ABRACADA
ACADABRA$A

$
A0
A1
A2
A3
A4
B0
B1
C0
D0

R1

R0

A0
R0
D0
$

R1
C0
A1
A2
A3
A4

B1

B0

B A

ABRACADABR
$ABRACADAB
BRA$ABRACA
BRACADABRA
CADABRA$AB
DABRA$ABRA
RA$ABRACAD
RACADABRA$
ADABRA$ABR
ABRA$ABRAC
A$ABRACADA
ACADABRA$A

Suppose I want to find where is located

1. Find rows with last character in search string (e.g., A) in F-column
2. Note which rows has the next letter (e.g., R) in L-column
3. Work backwards in search string until the first letter

Backward search enables
efficient searching using only
first and last columns of BWT

30

BWT practice

Given the string "mississippi$", complete the following tasks:

Construct the Burrows-Wheeler Transform (BWT) of the string.
Use the LF-mapping to find the number and positions of occurrences
of the following patterns in the original string:

a) "si"
b) "iss"
c) "pp"

31

After today, you should have a better understanding of

Splice-aware mapping with seed-chain-extend strategy

32

Seed-and-extend in
hash-based alignment

Seed Extend

Read: ATCGATTGCA

k-mers (k=3)
ATC, TCG, CGA, GAT, ATT,

TTG, TGC, GCA

Use hash table for rapid lookup
of potential matches quickly

Start from seed match and grow in
both directions with reference genome

CCGTATCGATTGCAGATG

GAT [7, 14]h(k)

Check to see if we can
align the read to reference

33

Before the next class, you should
Lecture 07A:

Quantification -
Foundations

Lecture 06B:
Sequence alignment -

Methodology

Today Tuesday

Work on (due Feb 14)
Study for (on Feb 18)

P01D
Quiz 02

Quiz 02

34

https://pitt-biosc1540-2025s.oasci.org/assessments/projects/genomics/01D/
https://pitt-biosc1540-2025s.oasci.org/assessments/quizzes/02/

