

Computational Biology (BIOSC 1540)

Lecture 05A

Sequence Alignment

Foundations

Feb 4, 2025

Announcements

Assignments

- Assignment P01D is due Monday (Feb 10)
- Assignment P01E will be released on Saturday (Feb 8)

Quizzes • Quiz 02 is on Feb 18 and will cover lectures 04A to 06B

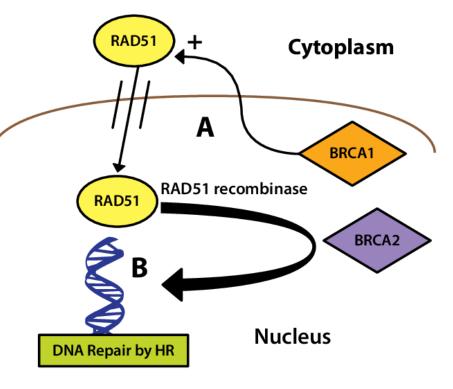
CBytes

- CByte 02 expires on Feb 7
- CByte 03 expires on Feb 15
- CByte 04 releases on Feb 8

Next reward: Checkpoint Submission Feedback

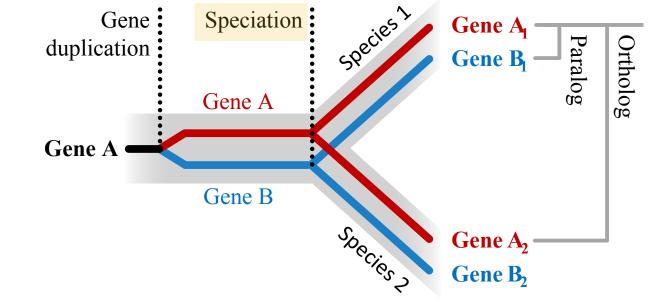
ATP until the next reward: 1,653

Why sequence alignment matters


Homology

Homology describes the evolutionary relationship between sequences and is key to understanding biological function and evolution

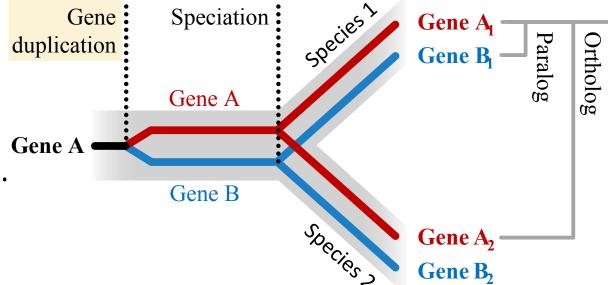
Homologous sequences share a common ancestor, even if they have diverged over time.


Homology helps transfer knowledge from wellstudied genes to newly discovered ones.

Example: The identification of BRCA1 as a breast cancer gene was based on identifying its association with RAD51, which function was known due to its high homology with yeast DNA repair

Orthologs are genes in different species that originated from a common ancestor and usually retain the same function

Orthologs arise from speciation events, meaning a single ancestral gene diverges into different species.

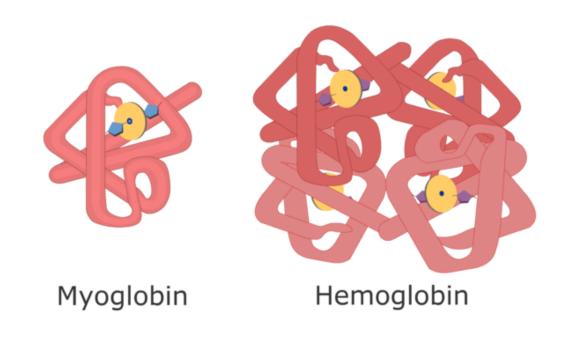

They typically perform the same function across species but may accumulate minor adaptations.

Example: The hemoglobin gene in humans and mice is orthologous, both encoding oxygen-carrying proteins in red blood cells.

Paralogs are genes that arise from duplication within the same genome and may evolve new functions

Paralogs originate from duplication events, which allows one copy to retain the original function while the other copy can

- Gain a new function (neofunctionalization).
- Specialize in a subset of the original function (subfunctionalization).
- Become a nonfunctional pseudogene.



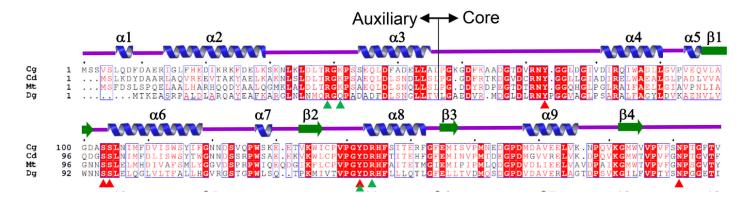
Paralogs drive gene family expansions, leading to specialized and diverse biological functions.

Gene duplication allows new biological functions to emerge while preserving essential roles

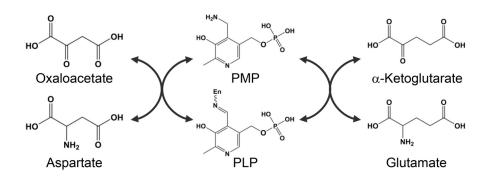
Examples of paralog-driven functional diversification:

- **Globin family**: Myoglobin (muscle oxygen storage) and hemoglobin (blood oxygen transport) evolved from a common ancestor.
- **HOX genes**: Regulate body plan development, with duplicates specializing in different body regions.
- **Opsin genes**: Responsible for color vision in vertebrates, arising from multiple duplications.

Why sequence alignment matters


Homology applications

Functional annotation of genes and proteins relies on identifying homologous sequences


Conserved motifs suggests similar functional roles in different organisms.

For example, if a newly **discovered protein aligns with a known enzyme**, it likely shares the same biochemical function.

Homology-based searches (e.g., BLAST) rapidly annotate unknown sequences by comparing them to well-characterized databases.

Conserved residues that bind to PLP cofactor are shown with triangles

Aspartate aminotransferase (AspAT)

Source

Protein sequence homology predicts 3D structure and function

Highly conserved residues often indicate key structural or catalytic sites.

Structural homology models unknown proteins based on alignment with known structures.

Protein threading techniques align sequences to structural databases like the Protein Data Bank.

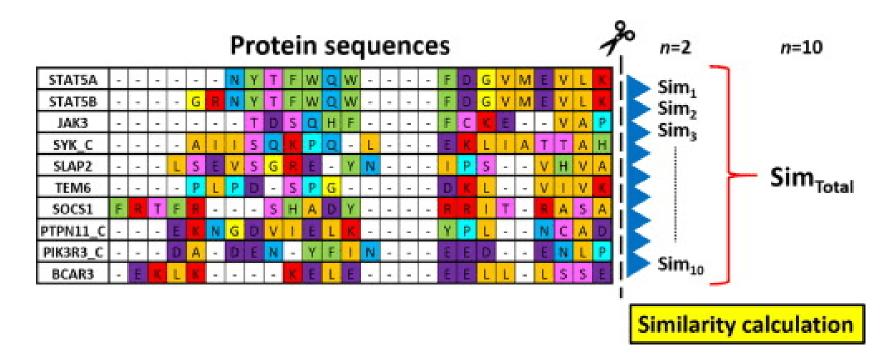
AlphaFold uses sequence alignments as inputs to its deep learning model

≡	27659 sequences, 159 columns		Show	/ Hide 🗸	Sort ∨	Group ∨	Filter V
	ID 🌲	• 40 •	20	. 9		20	
	Reference TARGET/1-159	/	ESIG <mark>K</mark>	PLP <mark>NRR</mark> N	<mark>v v l</mark> t s d t	SFNVEGV	
	Consensus	K R L T M G H P V I M G R K T F	ESIGR	P L P G <mark>R R N</mark>	I V L T <mark>R</mark> D P	DYQAEGA	
	Sequence Logo	KETIZERSTANGREI	ESIG	P P G R K N	IVL <mark>IR</mark>	A E B A	
	Coverage						
	Conservation	a di seconditata		alles I. e.			
1	TARGET/1-159		ESTGK			SENVEGV	胆间酸热
2	UniRef90 A0A2J8ADC8/2-178	RSTTAGGGVINGRTT	DSTPR	PLOGPLN	V V L T T S A	DLMNSNI	
2	UniRef90_A0A2J8ADC8/2-178 UniRef90_A0A2J8ADC8/438-608	RSTAGGGVINGRIT		PLKGRUN		ADLDPNI	
4	UniRef90 A0A2J8ADC8/438-008	RSTTAGGGVINGRKT	DSTP	PLKGRUN	VVITRSS	ADLDPNI	
5	UniRef90 A0A2U1P121/436-611	KKITMSNAVIMORKI	OSTPR	PLPDRLN	VVITRST	NEDAENT	日日日日
6	UniRef90 A0A2U1P121/715-890	KKLTMSNAVINGRKT		PLPGPLN		AFDSDNV	
7	UniRef90 A0A6J8E626/8-185	KKTTMENVVIMGRKT	FSTPR	PIPKRTN	TTISREM	KEAPSGV	
8	UniRef90 A0A6J8E626/194-373	TOKCSPTVVIKGRMT	ECTKR	TNPGVIN	VTTSHSK	RDDDEVV	
9	UniRef90 UPI0022B18839/37-217	KKMTTONVVIMGRKT	NSTPR		TTISKTM	SHAPTGA	
LO	UniRef90 UPI0022B18839/246-424	MELTSROVNIOGRKT	EGTGK		TVTTRDE	GRRDPDV	用語題
11	UniRef90 UPI001457FF82/6-184	KRITTENVVIMGRKT	VSTPR	PIPRRTN	TTISRTM	NETPIGT	0111110100
12	UniRef90 UPI001457FF82/192-372	MDLTSRCVNIKGRVT	остск	ARGSTIN	TVTSRNP	SEEDPYV	用用的關
L3	UniRef90 UPI00234EC90F/4-183	KKITSDNAVIMGRKT	VSTPR	PLKGRVN	TVISREL	KEVPEGV	
L4	UniRef90 UPI00234EC90F/225-406	SAHVSTITOTRGRUT	LSAMR		TTVSGTW	TERDPRV	
15	UniRef90 A0A8B7ZNQ9/10-182		ESTSE	RKPHKLF	EVISKTI	KELPPKA	創出設備
L6	UniRef90 A0A8B7ZNQ9/197-376	SAOTSKNAVIMGRKT			VVISKTI	SECPADA	日日時間
17	UniRef90 R7UK12/6-185	RKITSENVVLMGRKT	ESTPR	PLPNRTN	VVISASI	KEAPOGS	出口服用
18	UniRef90 R7UK12/195-373	SOLTOGVVNTKGRAT	ODTGK	ARPNVTT	TTTSKTI	SOLPEGA	
19	UniRef90 T1G9P0/5-182	RKITSENATIMGRKT	DSTPK		VVTSRTI	ECPDGRI	
20	UniRef90 T1G9P0/198-374	TSILOGTATTVG RLTV	ESMKR	HIEGAVY	TVVGSKK	HIISVPD	
21	UniRef90_A0A7J7JG58/7-183	RKLTTKNAVIMGRKT	FSTPR		TVISRAS	TLDTESV	
22	UniRef90 A0A7J7JG58/191-368	NSVISPVCLIEGRUS	OEATV		VVLSSDP	SRVPSPH	
23	UniRef90 A0A210PN44/7-170	KRITTENVLIMGRKT	TSIPR	PLPKRIN	IILSRTM	TETPTGT	
24	UniRef90 A0A210PN44/180-361	MDLTSKCVNIKGRVT	ОСТСК	SRDSIIN	IVISRNP	SEEDPYV	
25	UniRef90 A0A9N7VKC0/13-190	LKTVTRNMMVWGKLC	FSHPF	PLANTLH	V V L S T K L	KKVPDHA	
26	UniRef90_A0A9N7VKC0/214-371	LNTVTRNMMVWGKLC	V F S H P F	PLANILH	VVLNTKL	NEVPDHA	
27	UniRef90 A0A8B6BLZ4/22-159	KKN VVIMG RK T	VSIPR	PLPKRIN	IVLSREM	KEAPPGV	
28	UniRef90 A0A8B6BLZ4/167-346	TOKCSPTVVIKGRMT	ESTKR	THPGYLN	VIISHSK	RDQLESD	
29	UniRef90 A0A9J2PNF8/135-309	EYLTTKNAVLMGRKV		PLEDRLN	VVLSETM	DDPAESE	
30	UniRef90 A0A940DWL2/2-156	KKVTYGHPVVMGRKT	ESIGK	PLPGREN	IVVTRNK	EYOPEGV	
31	UniRef90 H8KUH0/6-166	KKLTTGNTIIMGRKT		PLPNRRN	VIISRNK	DLKIEGC	
32	UniRef90_A0A2D5XDZ3/1-161	KKLTLGKPIIMGRKT		PLPNRKN			

Homologous genes allow functional studies using model organisms to understand human biology

Importance in research:

- Used to **infer gene function across species** (e.g., using model organisms to study human genes).
- Enable **comparative genomics** and evolutionary studies.
- Help in **drug discovery**, as conserved drug targets can be tested in different organisms.
- **Knockout and mutation studies** in animals help determine gene function in humans.
- Evolutionarily conserved pathways (e.g., DNA repair, metabolism) can be studied using orthologs.



Conceptual interpretation of alignment results

Match and mismatches

Alignment results provide insight into sequence similarity, evolutionary relationships, and functional conservation

Alignment patterns reflect evolutionary events, including mutations, conservation, and sequence divergence

Alignment algorithms compare sequences to identify conservation, mutations, and functional domains.

Identical residues at aligned positions suggest evolutionary conservation and functional stability

CGACGATTCTATAGTCTAACATGCGAGCGTGACGAATAAAAGATCTCGCG

Matches () indicate strong evolutionary constraints, meaning the sequence is critical for function.

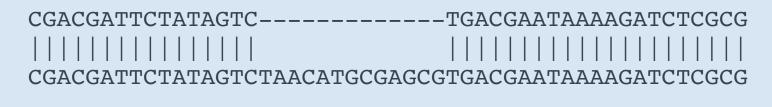
Highly **conserved sequences** often correspond to:

- **Protein active sites** (e.g., catalytic residues in enzymes).
- **DNA regulatory elements** (e.g., promoters, enhancers).
- **RNA structural motifs** (e.g., ribosomal RNA stems and loops).

Sequence mismatches () highlight mutations that contribute to genetic variation and adaptation

Mismatches occur when **different residues are aligned**

Point mutations can be neutral, beneficial, or deleterious.


- Synonymous mutations that do not alter the protein sequence.
- Nonsynonymous mutations that may change protein function.

Conceptual interpretation of alignment results

Insertions and deletions

Insertions (-) introduce new genetic material, impacting protein structure and genome evolution

Gaps are used to indicate insertions

Causes of insertions:

- Gene duplications leading to new protein functions.
- Insertion of transposable elements modifying gene regulation.
- Microindels affecting protein structure and function.

Functional and evolutionary impact:

- Short insertions in proteins modify binding sites or enzyme activity.
- Insertions in DNA regulatory regions affect gene expression patterns.

Deletions (-) remove genetic material, leading to functional changes or species divergence

CGACGATTCTATAGTCTAACATGCGAGCGTGACGAATAAAAGATCTCGCG

Gaps are used to indicate deletions

Causes of deletions:

- Loss of nonessential genes in parasitic or symbiotic organisms.
- Regulatory deletions affecting developmental pathways.
- Frameshift deletions that drastically alter protein coding.

Functional and evolutionary consequences:

- Can disable genes, leading to loss of function.
- Can optimize metabolic efficiency, as seen in endosymbiotic bacteria with streamlined genomes.

Small insertions and deletions (indels) are a major cause of genetic disorders

Indels play a major role in speciation by modifying gene structure and expression.

Frameshift mutations caused by small indels result in completely altered protein sequences.

Indels can disrupt coding sequences or regulatory elements, leading to disease.

- Cancer-related genes (e.g., TP53, BRCA1).
- Neurological disorders (e.g., Huntington's disease, caused by repeat expansions).
- Metabolic disorders (e.g., cystic fibrosis, due to a 3-base deletion in CFTR).

Conceptual interpretation of alignment results

Alignment scores

Alignment scores measure sequence similarity by rewarding matches and penalizing mismatches and gaps

Alignment algorithms assign numerical scores to quantify how well two sequences align.

Matches receive **positive scores** (e.g., +1 or +2)

• Higher values are assigned to matches in functionally critical regions.

Mismatches receive **negative scores** (e.g., -1 or -2)

- Lower penalties for conservative substitutions (e.g., leucine to isoleucine).
- Higher penalties for radical substitutions (e.g., leucine to arginine, which changes charge and structure).

Gaps are **heavily penalized** (e.g., -2, or -3).

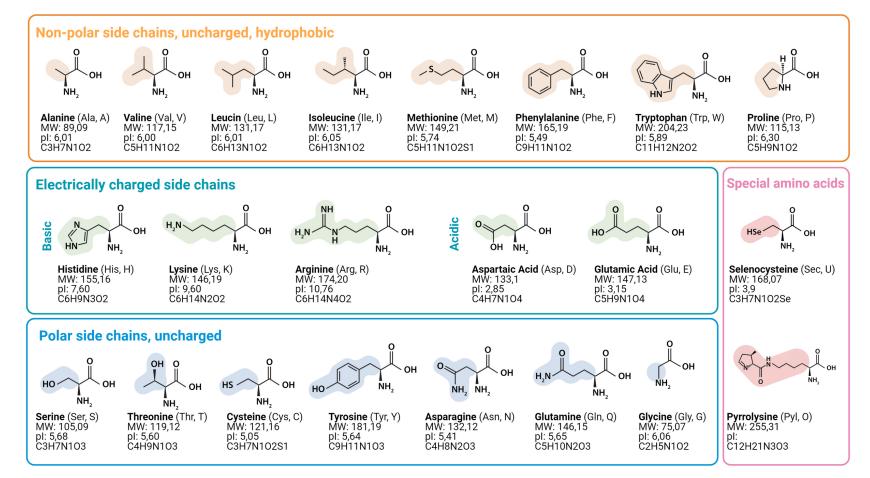
- Ensures meaningful evolutionary comparisons.
- This reflects that large insertions/deletions are less common than point mutations.

Substitution matrices model evolutionary relationships by assigning biologically meaningful scores to amino acid replacements

Not all mutations are equally likely—some substitutions occur more frequently due to biochemical properties.

Substitution matrices **assign different scores to different amino acid replacements** based on their evolutionary likelihood.

Impact on alignment quality:


- Helps distinguish true homology from random similarity.
- Improves evolutionary modeling.
- Adjusts mismatch penalties based on real-world observations.

Two widely used matrices are **PAM (Point Accepted Mutation) matrices** and **BLOSUM (Blocks Substitution Matrix)**

More frequent substitutions have lower penalties, while rare substitutions are penalized more heavily

Physicochemical properties influence substitution likelihood:

- Hydrophobic residues often replace other hydrophobic residues.
- Charged residues tend to substitute with others of similar charge.

Conceptual interpretation of alignment results

E-values

E-values measure the likelihood that an alignment occurs by chance, helping assess biological relevance

E-value (Expectation Value): Number of expected random matches in a database search.

Lower E-value = Higher significance (e.g., E = 0.001 means only 1 in 1,000 alignments is due to chance).

Database size affects E-value: Larger databases increase the probability of chance alignments.

Pairwise versus multiple sequence alignment

Pairwise sequence alignment is the fundamental method for comparing two biological sequences

Pairwise alignment finds the optimal arrangement of two sequences to maximize similarity and minimize differences.

Methods like global and local alignment provide different perspectives on sequence similarity.

•••

Query	1	ATGACTTTATCCATTCTAGTTGCACATGACTTGCAACGAGTAATTGGTTTTGAAAATCAA	60
Sbjct	2555705	AAAA.TCTCTAAAACG.ACC	2555646
Query Sbjct	61 2555645	TTACCTTGGCATCTACCAAATGATTTGAAGCATGTTAAAAAATTATCAACTGGTCATACT	120 2555586
Query	121	TTAGTAATGGGTCGTAAGACATTTGAATCGATTGGTAAACCACTACCGAATCGTCGAAAT	180
Sbjct	2555585	C.TCAGATA.TTAGGT.GAA.	2555526
Query Sbjct	181 2555525	GTTGTACTTACTTCAGATACAAGTTTCAACGTAGAGGGCGTTGATGTAATTCATTC	237 2555469
Query	238	ATTGAAGATATTTATCAACTACCGGGCCATGTTTTTATATTTGGAGGGCAAACATTATTT	297
Sbjct	2555468	CTAA.AG.GTT.TTA.AG.GTAC	2555409
Query	298	GAAGAAATGATTGATAAAGTGGACGACATGTATATTACTGTTATTGAAGGTAAATTTCGT	357
Sbjct	2555408	CCC.GATTCAATAGAA	2555349
Query	358	GGTGATACGTTCTTTCCACCTTATACATTTGAAGACTGGGAAGTTGCCTCTTCAGTTGAA	417
Sbjct	2555348	ACAACACAC.AAA	2555289
Query	418	GGTAAACTAGATGAGAAAAATACAATTCCACATACCTTTCTACATTTAATTCGTAAAAAA	477
Sbjct	2555288	CATAGACTG.GG	2555229

While pairwise alignment is effective for comparing two sequences, it has limitations for analyzing multiple sequences

Strengths:

- Computationally efficient for two sequences.
- Provides a direct, detailed comparison.
- Useful for identifying single mutations or evolutionary changes.

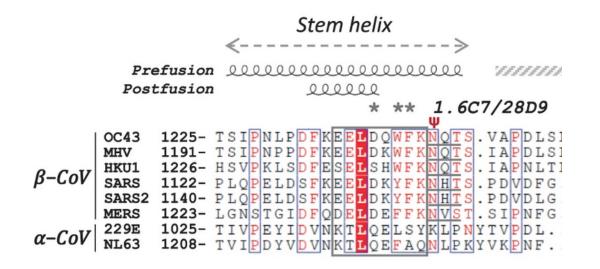
Limitations:

- Cannot reveal conserved regions across multiple species.
- Cannot model evolutionary relationships between many sequences.
- Performance and accuracy decline when extended to multiple sequences

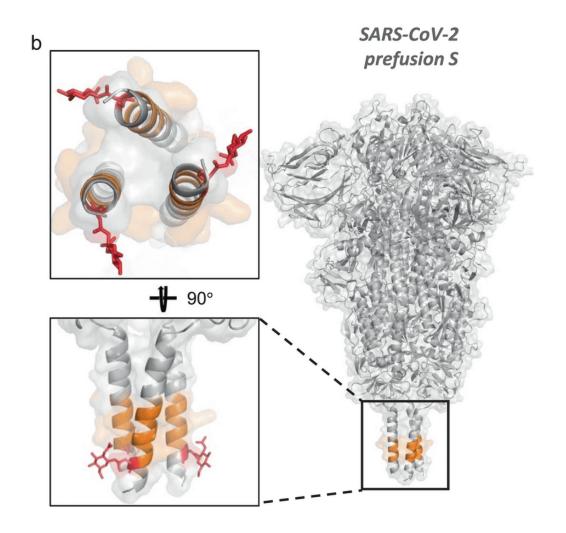
Example: A pairwise comparison of hemoglobin genes between humans and chimpanzees provides insight into species divergence but does not reveal broader evolutionary trends across mammals.

MSA extends pairwise alignment to multiple sequences, enabling more powerful biological interpretations

MSA aligns three or more sequences to reveal **conserved motifs**, **functional domains**, **and evolutionary relationships**.


Unlike pairwise alignment, MSA considers multiple substitutions, insertions, and deletions across species.

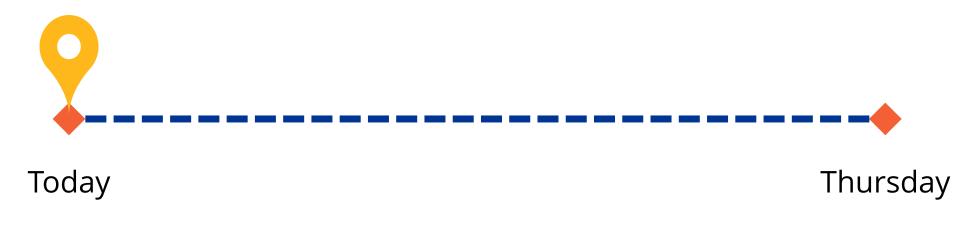
Example: **ClustalW and MUSCLE** generate MSAs to compare entire protein families



Example: MSA of SARS-CoV-2 spike proteins identifies conserved regions for vaccine development

Sequence alignment identified key conserved residues that are often epitopes

Residues in orange are stem helix epitope region


Before the next class, you should

Lecture 05A:

Sequence alignment -Foundations

Lecture 05B:

Sequence alignment -Methodology

• Start P01D (due Feb 10)