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 is live and will expire on Feb 1
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2

https://pitt-biosc1540-2025s.oasci.org/cbytes/01/
https://pitt-biosc1540-2025s.oasci.org/cbytes/02/
https://pitt-biosc1540-2025s.oasci.org/cbytes/03/
https://pitt-biosc1540-2025s.oasci.org/assessments/quizzes/02/
https://pitt-biosc1540-2025s.oasci.org/lectures/04A/
https://pitt-biosc1540-2025s.oasci.org/lectures/06B/
https://pitt-biosc1540-2025s.oasci.org/assessments/projects/genomics/01C/
https://pitt-biosc1540-2025s.oasci.org/cbytes/#advanced-training-points-atp


After today, you should have a better understanding of

Problem formulation of gene prediction

3



Gene prediction identifies protein-coding regions
in a genome using computational methods

Gene prediction is essential for genome annotation
and understanding gene function.

Predicted genes

DNA sequences contain a mix of coding
and noncoding regions.
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Early computational gene prediction methods detected
genes by recognizing characteristic sequence patterns

However, reliance on fixed patterns
limited accuracy in complex genomes

In the early days (1980s), gene prediction
was based on hardcoded rules

Fickett, J. W. (1982). Recognition of protein coding regions in
DNA sequences. Nucleic acids research, 10(17), 5303-5318.

Codon position biases
Start codons (e.g., ATG)
Termination signals (e.g., TAA, TAG, TGA)
Transcription start sites (e.g., TATA box)

For example, they would search for

Autocorrelation of T in sequences

Coding

Non-coding
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Relying on fixed patterns often
leads to incorrect predictions

Many non-coding sequences contain
patterns that mimic coding sequences,
leading to high false positive rates

Not all genes follow the same
start/stop codon rules, and promoter
motifs are not always well-defined.

Some genes overlap or exist within
other genes, making simple
start/stop rules unreliable.

Source
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https://www.nature.com/articles/s41576-021-00417-w


To improve accuracy, gene prediction must
go beyond fixed patterns and incorporate

statistical properties of real genes
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After today, you should have a better understanding of

The fundamentals of probability and its role

in modeling biological data

Conditional probability
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Probabilistic Models Improve Gene Prediction

Codon bias: Some codons appear more frequently in real genes.
Sequence composition: GC content differences indicate coding regions.
Signal sequences: Start/stop codons, splice sites, and
promoter motifs have variable strengths.

Instead of using fixed rules, we use probabilistic
models that quantify uncertainty

These models assign probabilities based on multiple features:
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Some events occur independently, while
others depend on previous observations

Independent Events: The probability of one event does not affect another

Example: Rolling a die twice—each roll is
unaffected by the previous one

Dependent Events: The probability of one event depends on another

Example: A sequence with a high GC-ratio is
more likely to belong to a coding region.

Gene prediction inherently relies on dependencies between
nucleotides, codons, and genomic regions
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Motivating example: Suppose we want to predict
whether a sequence is a gene using its GC content

Genes often have higher GC
content that surrounding
non-coding regions

However, not all GC-rich
regions are genes, and not
all genes are GC-rich

Our goal is to update our belief
(i.e., probability) about "gene-ness"
based on a region's GC content
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Joint probability is the statistical measurement of
two events occurring at the same time

P (gene∣GC-rich)

Suppose I want to compute the probability
of a region being both GC-rich and a gene

means "and" in set notation∩

P (GC-rich)Probability of being GC-rich

Probability that a region is a
gene given that it's GC-rich 

P (gene ∩ GC-rich)

Gene GC-richP (GC-rich)P (gene∣GC-rich)

=

This is the (conditional)
probability we want to know
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Conditional probability allows us to refine dependent
predictions based on new information

P (gene∣GC-rich) =
P (GC-rich)

P (gene ∩ GC-rich)

Gene GC-rich

If we have the following information available:

P (gene ∩ GC-rich)

P (GC-rich)

Probability of a random region
being a gene and GC-rich

Probability of a random
region being GC-rich

Rearranging our equation allows us to
compute the probability that a given
region could be gene if it's GC-rich

We can compute these
properties with known data
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Challenge: Multiple signals can improve gene prediction

Why multiple signals?

A single feature like GC-richness helps, but not all genes are GC-rich, and
non-gene regions can be GC-rich too.
Other signals include promoter motifs, codon bias, start/stop codons, etc.

Objective:

Combine these signals to increase confidence in identifying gene regions.
Challenge: How do we do this probabilistically without getting overwhelmed?
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After today, you should have a better understanding of

The fundamentals of probability and its role

in modeling biological data

Bayes' theorem
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Using direct conditional probability for many signals
requires enumerating multi-way intersections

P (Gene ∣ X) =
P (X)

P (Gene ∩X)

Conditional probability for one signal, X

Conditional probability for N signals,

P (Gene ∣ X ,X ,… ,X ) =1 2 n

P (X ∩X … X )1 2 n

P (Gene ∩X ∩X … X )1 2 n

For each new signal, you must compute a new, higher-
dimensional intersection over the whole genome.
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Enumerating multi-way intersections is
cumbersome and lacks flexibility

Data Explosion:

2 features → 4-way sets (Gene vs. not-Gene,  vs. not- , etc.)
3 features → 8-way sets, and so on—this scales exponentially.

X
1

X
1

Changing Thresholds: If you redefine “GC-rich” from 60% to 65%,
you have to recompute those entire intersections.

Interpretation Issues: Knowing the overlap doesn’t explain how each
feature individually shifts the probability that we have a gene.
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Bayes’ Theorem provides a more modular, flexible
way to incorporate multiple signals

Conditional probability for N signals (and after some math)

P (Gene ∣ X ,… ,X ) ∝1 n P (Gene) P (X ∣
i=1

∏
N

i Gene)

P (Gene) P (X ∣i Gene)Measure just once and separately measure 

P (X ∣N+1 Gene)XN+1Adding a new signal just requires

P (X ∣i Gene)Each shows how strongly featureXi indicates a gene

Advantages

When you want to rank or compare classes based on posterior probability, you can ignore the denominator 18



Biological sequences also have inherent
dependencies that require more than Bayes' formula

Bayes’ Theorem allows us to integrate multiple independent signals
(e.g., GC-richness, codon bias) to update the probability that a region is a gene

However, DNA sequences also have a
"sequential" aspect to them (e.g.,
promoters, ribosomal binding sites, etc.)

While effective for multiple independent features, the Bayesian approach doesn't
account for the contextual dependencies between consecutive nucleotides or regions

Markov Models provide a framework to incorporate these sequential dependencies,
allowing for more accurate and context-aware gene prediction
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After today, you should have a better understanding of

The concept of Markov models and how

they describe sequential dependencies
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Many biological processes exhibit sequential
dependencies that can be modeled using probability

What is a sequential dependency?

The future state of a system depends on its current state rather
than its full history.

Markov models provide a way to quantify and predict these sequence patterns.

Examples in Biology:

DNA follows patterns where certain nucleotides are more likely to follow others.
Protein secondary structures depend on adjacent amino acids.
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Markov Models are ideal for modeling sequential data with
dependencies between consecutive elements

A Markov Model is a stochastic model that describes a sequence
of possible events where the probability of each event depends
only on the state attained in the previous event.

Real-World Example:

If today is rainy, tomorrow is more likely to be rainy than sunny.
Tomorrow’s weather doesn’t depend on whether it was rainy three days ago.

P (X ∣N+1 X ,X ,… ,X ) =0 1 N P (X ∣N+1 X )N
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A Markov Chain is a type of Markov Model that represents
states and the probabilities of transitioning between them

Components of a Markov Chain:

1. States: Distinct conditions (e.g., sunny, rainy, cloudy) that are observable.
2. Transitions: Movements from one state to another (e.g., weather changing).
3. Transition Probabilities: The likelihood of moving from one state to another.

Visual Representation:

States depicted as nodes.
Transitions shown as directed
edges with associated probabilities.

Interpretations:

If it's sunny today, it's 60% likely
tomorrow will be sunny

If it's cloudy today, it's 50%
likely tomorrow will be rainy 23



After today, you should have a better understanding of

The concept of Markov models and how

they describe sequential dependencies

First order
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A Markov model can predict the next nucleotide
depending only on the current nucleotide

Transition Probabilities: , , etc.

Example: If a G is present, what is the
probability the next base is A?

P(A∣G) P(T∣C)

The likelihood of observing a nucleotide
should depend on the preceding nucleotide

States: {A, C, G, T} – The four nucleotides.
0.3 0.2

0.3
0.2

0.2

0.3

0.1
0.40.4

0.1

0.4

0.1

0.1
0.3

0.2 0.4
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Transition matrices help quantify nucleotide
dependencies in sequences

A C G T
A 0.3 0.2 0.3 0.2

C 0.2 0.3 0.1 0.4

G 0.4 0.1 0.4 0.1

T 0.1 0.3 0.2 0.4

Instead of a graph, we can represent this as a transition matrix

Interpretation:

If the current base is G, the probability
of transitioning to C is 0.1.
If the current base is A, there’s a 30%
chance the next base is also A. Cu

rr
en

t

Next
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Example: Transition probabilities differ between coding
and non-coding regions based on GC content

Genes (i.e., coding regions) generally have high GC content due to codon biases

Thus, we could assume that coding
regions have higher  and P(G∣C) P(C∣G)

Non-coding regions would then
have more random nucleotide
distributions with less GC bias

A C G T
A 0.3 0.2 0.3 0.2

C 0.2 0.3 0.1 0.4

G 0.4 0.1 0.4 0.1

T 0.1 0.3 0.2 0.4

Cu
rr

en
t

Next

A C G T
A 0.2 0.3 0.4 0.1

C 0.1 0.4 0.3 0.2

G 0.1 0.4 0.4 0.1

T 0.1 0.3 0.4 0.2

Cu
rr

en
t

Next
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By comparing transition probabilities, we can classify a
sequence as coding or non-coding

P (S∣C) = P (s ∣C) P (s ∣s ,C)1

i=2

∏
n

i i−1

P (S∣N) = P (s ∣N) P (s ∣s ,N)1

i=2

∏
n

i i−1

Step 1: Train two Markov models—one for coding DNA and one for non-coding DNA.

Step 2: Compute the probability of the observed sequence (S) if it's

Coding (C)

Non-coding (N)

Step 3: Assign the sequence to the model with the higher likelihood

P (S∣C) P (S∣N)versus

or

If this sequence follows a C or N pattern,
the probability will be higher
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First-order Markov models classify sequences based on
single nucleotide transitions, ignoring codon structure

Limited Context Awareness: FOMMs consider only the immediately
preceding nucleotide, preventing them from capturing the inherent
triplet codon structure of protein-coding sequences.

Frame-Shift Misclassification: Sequences that deviate from typical single-nucleotide
transitions, such as those affected by insertions or deletions, may be incorrectly
classified, leading to misidentification of coding regions.

Randomized Nucleotide Transitions: Since transitions occur between
individual bases rather than codons, FOMMs do not distinguish between
meaningful codon sequences and arbitrary base order.

29



After today, you should have a better understanding of

The concept of Markov models and how

they describe sequential dependencies

Higher order
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A higher-order Markov model (HOMM) improves
gene prediction by modeling codon triplets

A k-th order Markov model
considers k previous nucleotides
when predicting the next k

A third-order Markov Model is codon-based

ATG CCT GTA TTA
ATG 0.2 0.3 0.4 0.1

CCT 0.1 0.4 0.3 0.2

GTA 0.1 0.4 0.4 0.1

TTA 0.1 0.3 0.4 0.2

Cu
rr

en
t

Next

Transition probabilities reflect
valid codon structures, ensuring a
more biologically accurate model

Models capture statistical biases inherent
in real genes, such as the rarity of stop

codons within coding regions

(Not all of them)
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HOMMs are inefficient due to
comparing between N models

We can bake in the idea that the region (i.e., coding or non-coding)
influences codon transitions directly into one model

P (S∣C) = P (s ∣C) P (s ∣s ,C)1

i=2

∏
n

i i−1

P (S∣N) = P (s ∣N) P (s ∣s ,N)1

i=2

∏
n

i i−1

Coding (C)

Non-coding (N)

or
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After today, you should have a better understanding of

The structure and purpose of Hidden Markov

Models (HMM) in gene prediction
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Hidden Markov Models (HMMs) solve the limitations of
Markov models by introducing hidden states

Hidden States are biological states (e.g., coding vs.
noncoding DNA) we are trying to determine

What we can still observe are k-mer
transition probabilities in our genome

By directly including hidden states in our
model, we can directly infer the optimal
sequence of hidden states to explain our
observed state transitions
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HMMs consist of states, transition probabilities, emission
probabilities, and initial probabilities

 States

Hidden states: Coding vs. Non-coding DNA
Observable states: Codons

Transition Probabilities

Probability of moving from one
hidden state to another.
Example: .P(coding→noncoding)

Emission Probabilities

Probability of observing a nucleotide (A,
C, G, T) in a given hidden state.
Example: , .P(A∣coding) P(G∣noncoding)
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After today, you should have a better understanding of

How to Predict Genes with an HMM
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The Viterbi algorithm finds the most probable sequence of
hidden states using dynamic programming

  Instead of computing all
possible paths, Viterbi keeps
track of the best path so far.

The Viterbi algorithm finds the best possible sequence of
hidden states that explains the observed sequence

It is essential for determining which nucleotides belong to a gene

This is called dynamic programming, and we will cover this topic next week!
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The Viterbi algorithm uses dynamic programming to
efficiently compute the best state sequence

Step 1: Define Components

States: Coding (C), Noncoding (N).
Observations: A, C, G, T (DNA bases).
Transition Probabilities: Probability of moving between states.
Emission Probabilities: Probability of observing a base in a state.

Step 2: Initialize Probabilities

Set initial probabilities for each state.

Step 4: Traceback

Once the table is filled, we trace back to find the most probable path.

Step 3: Fill in the Table

Compute probabilities step by step using previous best paths.
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Before the next class, you should

Finish and submit  (due Feb 1)
Work on , , and 

P01C
CByte 01 CByte 02 CByte 03

Lecture 05A:
Sequence alignment -

Foundations

Lecture 04B:
Gene prediction -

Methodology

Today Tuesday
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