
Computational Biology
(BIOSC 1540)

Jan 23, 2025

Lecture 03B

Genome assembly

Methodology

1

Announcements

 is live and will expire on Feb 1
 will be released Friday (Jan 24) and expire on Feb 7

CByte 01
CByte 02

 is next week (Jan 28) and will cover lectures to Quiz 01 02A 03B

Assignments Assignment is due Friday (Jan 24)
Assignment P01C is due next Friday (Jan 31)

P01B

Quizzes

CBytes

ATP until the next reward: 1,903

Next reward: Checkpoint Submission Feedback

2

https://pitt-biosc1540-2025s.oasci.org/cbytes/01/
https://pitt-biosc1540-2025s.oasci.org/cbytes/02/
https://pitt-biosc1540-2025s.oasci.org/assessments/quizzes/01/
https://pitt-biosc1540-2025s.oasci.org/lectures/02A/
https://pitt-biosc1540-2025s.oasci.org/lectures/03B/
https://pitt-biosc1540-2025s.oasci.org/assessments/projects/genomics/01B/
https://pitt-biosc1540-2025s.oasci.org/cbytes/#advanced-training-points-atp

Quick homework tip
When asking for five FASTQ entries, here is what it should look like

fastq_five = """
@synthetic_read_1/f
TACGGCTAGGCATCTCGAGATCTGTGACGTTTCAGATCCCCTGCTGCGTGCGTTTGATGTCCAACTGTCGTACTCACGCCGGACGGGGAGTAACTTCTTTTCGAGCCGTAGTT
+
46:47287653825380557902185865586;11784536:8>:7946436;67:04>8671293:53991474581727927476120866:4;;4418895672645233
@synthetic_read_2/f
GACGATCGTAGCTCAGTCGGACCAACGACTCGCTGCTTACTGGAAGATCCTCGTAGACGGTTTTTTTGCGAAAGTACAGGCGACCCAGTACAAATCGGGATAGTGGTCACTTA
+
GGDIHIFGEHGGIGGIHGFGIIFIHFDEFEFCCFFIIHIGIEEFIEFFICDGFHICFEICGGFFEIEEFGIFGFIHIIBDGHIGHIIGGGHFGIEHIIIDIIECAIHDHCEDE
@synthetic_read_3/f
CGTAGCTGACGTAGATTCGATTTAAGAAACGCAGATATGGACATTGTCGCCGTGCCTTTATATTCCACATATCGTGGTAATCATACCGGCATAGGGTCATGTCCGCAGCTGTC
+
:=9<<:7<9::=<?<<6;;=;?;<7;9=9?6:8;8A9:=>=<:A79;=>=;:==:<4::7<9?E4<9;;:97=<7@9;8?@<7999:A9:=;6:?>:@988A?97=A>=@:;9
@synthetic_read_4/f
TACGGCTAGGCACGTTTTCAGCAATCACGCGTGAGAATGCAATACAGCTGAGTATAGGTGGCCGGGCGTACGTTTCTACGTGAGCATGTTTTTTTATTACAGAGTACCGGTAG
+
>:A@=@=<ABB><=:==?>@=><<<9=?3:>@CHD;?=7:@?6G<8<@?AEE<=?;<;C<66B3>>>>=8488<8>?@9>43>?A?A61:@8;:6@97;825=>7>8><1<85
@synthetic_read_5/f
GTACGATCGTACCTGCGTACAAAACAGTTTCGGGGTCCAAACCACGCCTCAACTGTTCTCGGTTAGTACCGTAGCTACACTCGGTCTATCTGTCAGCTGCCGTTCATTCGAGC
+
78<8675<68;9;9<72;4==:689<;95=5;?76:57<16;:4@;9.=:1:;?<49;89;0<>?6327778:8:518?7=79:6:<7><A@16:65<98:6<7446<;@9=9
"""

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

3

After today, you should have a better understanding of

Problem formulation of genome assembly

Why we need genome assembly

4

5
DNA sequence (i.e., contig)

Overlapping reads

Assembly
algorithms

TACGATCGGATTACGCGTAGGCTAGCTTACGGACTCGATGTACGATCGGATTACG

Genome assembly reconstructs a long DNA
sequence from short, error-prone reads, ensuring

as many reads fit into the final sequence

Recap from L03A

https://pitt-biosc1540-2025s.oasci.org/lectures/03A/

After today, you should have a better understanding of

Problem formulation of genome assembly

Assumptions

6

We make simplifying assumptions
to address challenges and make

assembly tractable

7

Reads originate from a single,
contiguous genome

8

If we had two sources of DNA

Chance of overlap is likely, and it would be challenging
to differentiate the origin of each read

+

It dramatically simplifies our problem if we
assume only a single source of reads

Sequencing coverage is sufficient for
redundancy and error correction

Real sequencing errors can be fixed in high-coverage areas

Real SNPs can be confidently detected when all reads have the same base

TACGATCGGATTACGCGTAGGCTAGCTTACGGACTCGATGTACGATCGGATTACGCGTAGG

9

Assume that we have high coverage

What if your sequencing data does
not meet these assumptions?

This happens all the time in science!

If you more robust options are
available, using those may be required

If there is no other option, use the best
approach and disclose how this could
impact your results and interpretation

10

After today, you should have a better understanding of

Problem formulation of genome assembly

String manipulation in Python

11

Review: DNA sequences are
represented as strings in Python

read1 = "ATCG"
read2 = "TCGA"

1
2

A DNA sequence is simply a sequence of letters:
A, T, C, and G. In Python, we can represent this
using quotation marks ("" or '').

read_long = """
CGTAGCTGACGTAGATTCGATTTAAGAAACGCAGATATGGACATTGTCGCCGTGCCTTTATAT
TCCACATATCGTGGTAATCATACCGGCATAGGGTCATGTCCGCAGCTGTCCAACTATCGGTTA
ACGTTCCCCCTACTATCTCTGCGCGAGCCTAGAGTAAATCGATGAGTCTGAAGAACGCCTCAT
ATCTGCTGTATGCCCGCCGCGTGAACTCTCAGTATTCGCGAACACATTGGTCTTGCTATCCTC
GGTAAGGAAC
"""

1
2
3
4
5
6
7

12

Comparing strings allows us to detect
similarities or differences between DNA reads

read1 = "ATCG"
read2 = "TCGA"

Compare two strings
print(read1 == read2) # Output: False

1
2
3
4
5

To compare strings, we can use the equality operator ==

read1 = "ATCG"
read2 = "ATCG"

Compare two strings
print(read1 == read2) # Output: True

1
2
3
4
5

13

We can extract parts of a string
using indices in Python

0123
ATCG

Use square brackets [] to get a character by its index read = "ATCG"
print(read[0]) # Output: A
print(read[2]) # Output: C

1
2
3

Use slicing with start:stop to get part of a string print(read[0:2]) # Output: AT
print(read[1:3]) # Output: TC

1
2

Python does not include the stop index

Each character in a string has an index

Example: "C" has index of 2

14

We can use loops to check every
position in a string

Use a for loop to go through each
character one by one

read = "ATCG"

for char in read:
 print(char)
Output:
A
T
C
G

1
2
3
4
5
6
7
8
9

read = "ATCG"

for i in range(len(read)):
 # Print substrings starting at index i
 print(read[i:])
Output:
ATCG
TCG
CG
G

1
2
3
4
5
6
7
8
9
10

You can also slice inside of a
for loop with an index

range(len(read))
generates integers from 0 until the
length of the read (in this case 4)

15

Comparing parts of strings allows us to
find overlaps between DNA reads

read1 = "ATCG"
read2 = "TCGA"

for i in range(len(read1)):
 if read1[i:] == read2[:len(read1) - i]:
 print(f"Overlap found: {read1[i:]}")
 break
Output: Overlap found: TCG

1
2
3
4
5
6
7
8

Let’s find where read1 overlaps with read2

When i = 0:

read1[0:] gives us "ATCG" (the full string)
read2[:4] gives us "TCGA" (first 4 characters)
Comparison: "ATCG" == "TCGA"
Result: No match

16

Comparing parts of strings allows us to
find overlaps between DNA reads

read1 = "ATCG"
read2 = "TCGA"

for i in range(len(read1)):
 if read1[i:] == read2[:len(read1) - i]:
 print(f"Overlap found: {read1[i:]}")
 break
Output: Overlap found: TCG

1
2
3
4
5
6
7
8

Next is i = 1:

read1[1:] gives us "TCG" (excluding 'A')
read2[:3] gives us "TCG" (first 3 characters)
Comparison: "TCG" == "TCG"
Result: Match found! 🎉

17

Comparing parts of strings allows us to
find overlaps between DNA reads

Once we find the overlap, we
can merge the reads read1 = "ATCG"

read2 = "TCGA"

i = 1

merged = read1[:i] + read2
print(merged)
Output: ATCGA

1
2
3
4
5
6
7
8

We can use this approach of
finding overlaps and merging
reads to form a contig

This idea of finding overlaps and merging motivates our
first assembly approach: the greedy algorithm

18

After today, you should have a better understanding of

The greedy algorithm for genome assembly

Overlaps and merges

19

The greedy algorithm builds genome assemblies
by iteratively merging the best overlaps

Algorithm

1. Check every possible read for the largest overlap.

2. Merge the two reads with largest overlap.

3. Repeat until no further merges are possible.

At the end, we have a set of contigs that
represent our original DNA sequence

20

The greedy algorithm minimizes
repeats by maximizing overlap

The greedy algorithm focuses on selecting the best immediate option (i.e., local
optimal) at each step without full consideration of the overall global solution

The greedy algorithm aims to find
the shortest superstring, which
minimizes unnecessary duplication.

A superstring is a single string that
contains all reads as substrings

Example: ACGTAC is a superstring of

ACGT, CGTA, GTAC

This means the greedy algorithm will always make the best move
in the moment even if it gives the wrong final answer

21

Being greedy makes genome
assembly tractable

22

After today, you should have a better understanding of

The greedy algorithm for genome assembly

Breaking ties

23

Tie-breaking rules are necessary
when overlaps are identical

Talk with your neighbors

Suppose we have these three reads
ACGTAA CGTAACwith a highest overlap of five

We merge reads R2 and R3:

TAACGT

R1 R2 R3

TAACGT ACGTAAC
(and keep R1)

However, now we have a problem

Overlap of 4
TAACGT

ACGTAAC

24

Overlap of 4
TAACGT

ACGTAAC

ACGTAACGT TAACGTAAC

Both have a length of 9, which
one is the correct move?

Tie breakers are a personal preference

First encountered, first merged

Highest quality base calls

Highest coverage

Look ahead

Exclude

The one you found first

Use sequence with highest quality

Whichever results in more coverage

Do both and evaluate consequences

Be petty and don't merge them
(separate contigs)

25

After today, you should have a better understanding of

The greedy algorithm for genome assembly

Trouble with repeats

26

Greedy assembly will incorrectly collapse
repeats if possible

a_long_long_long_time

We are missing a "_long". Why?

Let's take a string and cyclically
permute it with k = 6

Then perform the greedy algorithm

27

Longer reads and genome assembly

We get the correct string back, but how
did increasing our k fix this?

a_long_long_long_time

By having one read span all three "long"s, (i.e.,
the repeating region) we prevented a collapse

k = 8

Remember: This is why long sequencing reads
are very helpful in resolving repeats! 28

After today, you should have a better understanding of

De Bruijn graphs and their role in assembly

K-mers

29

The greedy algorithm provides insights but is
rarely used in modern genome assembly

The greedy approach is computationally
efficient but fails for large, complex genomes.

30

Finding overlaps between all reads
scales poorly with genome size

Full pairwise comparisons between reads require operationsO(n)2

where is the number of readsn

As our number of reads
increases, our time to find

overlaps dramatically increases

However, the number of reads
also improves our assembly

31

k-mers break reads into manageable,
fixed-length pieces

By decomposing reads into k-mers, we can:

Represent sequences as collections of overlapping k-mers.
Avoid comparing entire reads by focusing on k-mer matches.
Use fixed-length k-mers to tolerate sequencing errors in overlaps.
Number of reads does not change number of k-mers

Instead of comparing whole sequences,
we can compare k-mers!

A k-mer is a substring of length
 extracted from a sequence

k

Example: For the sequence ATCGT, the 3-mers
are ATC, TCG, CGT.

32

Building k-mers from a string

GGCGAT TCATCG

1. Slice first k characters
2. Shift right one character
3. Repeat

Spectrum with k = 3

GGC
GCG

CGA

TCG
ATC

GAT
AT T

T TC
TCA

CAT

All 3-mers

33

k-mers are robust to sequencing errors

Sequencing errors affect only a few k-mers in a read, not the entire sequence.

Longer k-mers provide specificity, while shorter k-mers ensure sensitivity.

Even if a single read has errors, most k-mers will match correctly to others.

34

After today, you should have a better understanding of

De Bruijn graphs and their role in assembly

Building graphs

35

Graphs is a data structure for drawing
relationships between items

Node

Represents a single entity

Person
Location
Protein
Sequencing read

Edge

Represents a connection
(possibly with a direction)

Instagram follower
Flights
Protein-protein interaction
Sequence overlap

36

Genome assembly uses direct edges to
specify overlap and concatenation

"tomorrow and tomorrow and tomorrow"Let's build a directed multigraph:

1. Each unique k-mer is a node
2. Add directed edges for each

overlap and concatenation

K-mer is a substring
of length k

(We will cheat here and write
down just unique words)

tomorrow and

37

Build a De Bruijn graph with k-1 nodes

AATGGCGTA

AAT ATG GGC GCGTGG CGT GTA

AATG ATGG TGGG

GGCG GCGT CGTA

5'

38

3'

Step 1:
Let's use k = 4

Step 2:

AATGL R

Step 3: Repeat

ATGG

TGGG

GGCG

GCGT

CGTA

Take left and right k-1 mer and make two connected nodes

Build k-mers

Building De Bruijn graphs with a read

CGTAAAT

Build a De Bruijn graph with k = 3

CGT

GTA

TAA

AAA

AAT
CG GT TA AA AT

39

De Bruijn graphs with multiple reads

5' AATGGCGTA 3' 5' CGTAAAT 3'
Read 1 Read 2

Let's use nodes of
length 4

AAT ATG GGC GCGTGG CGT GTA TAA AAA

40

Frist, build the De Bruijn graph for Read 1

Add edges and any new k-mers from Read 2

Note: This is a circular genome

Another example, but not circular

5' AATGGCGTA 3' 5' CGTAAAG 3' 5' TAAAGGCGAA3'
Read 1 Read 2 Read 3

AAT ATG GGC GCGTGG CGT GTA TAA

41

AAA AAG

CGA GAA

AGG

We can add weights to edges
instead of drawing multiple edges

5' AATGGCGTA 3' 5' CGTAAAG 3' 5' TAAAGGCGAA3'
Read 1 Read 2 Read 3

AAT ATG GGC GCGTGG CGT GTA TAA AAA AAG

CGA GAA

AGG

2 2 21 1 1

1

1

21
1

1

42

Another (another) example, but not circular

GATTAC TACAGATT AGATTAC TACCGG GGATTA

The solution is on the next slide (no peeking!)

De Bruijn graphs is one of the most missed questions
on assessments, let's get some practice

43

Another example, but not circular

GATTAC TACAGATT AGATTAC TACCGG GGATTA

GATT ATTA TTACTACA ACAG CAGA AGAT

44

TACC ACCG CCGG

GGAT

After today, you should have a better understanding of

De Bruijn graphs and their role in assembly

Characteristics

45

46

Tips are good starting points of contigs if
they have high coverage

Islands are reads we couldn't merge

47

After today, you should have a better understanding of

De Bruijn graphs and their role in assembly

Graph data structures in Python

48

Graph representation in Python
Adjacency lists can be used to

computationally represent graphs

Example of a weighted directed graph
graph = {
 'A': {'B': 5, 'C': 10}, # A -> B (weight 5), A -> C (weight 10)
 'B': {'D': 15}, # B -> D (weight 15)
 'C': {'D': 20}, # C -> D (weight 20)
 'D': {} # D has no outgoing edges
}

1
2
3
4
5
6
7

Perhaps conceptually helpful for CByte 02!
49

After today, you should have a better understanding of

Graph traversal methods for extracting contigs

50

De Bruijn graphs are traversed to extract
contiguous genome sequences

Traversal is the process of finding contigs (continuous DNA sequences)
by walking through the De Bruijn graph

GATT ATTA TTACTACA ACAG CAGA AGAT

TACC ACCG CCGG

GGAT

51

Edges: Represent k-mer overlaps between nodes.

Nodes: Represent k-mers derived from sequencing reads.

Standard traversal methods, such as breadth-first search (BFS) and depth-first
search (DFS), are building blocks for more advanced assembly techniques.

DFS explores as far as possible along
each branch before backtracking

Imagine exploring a maze with this strategy:

Keep walking forward until you hit a dead end
Backtrack only when necessary
Take the first unexplored path you see

 A
 / \
 B C
 / / \
D E F

DFS Traversal from A (one possible order):

1. A → B → D (follow first path to end)
2. Backtrack to A
3. A → C → E
4. Backtrack to C
5. C → F

52

BFS explores all neighbors of a node
before moving deeper into the graph

Imagine you're dropping a pebble in a pond:

First, you see ripples reach nearby points
Then, they spread outward in circles
Each "wave" represents a level of exploration

 A
 / \
 B C
 / / \
D E F

DFS Traversal from A (one possible order):

1. A → B → D (follow first path to end)
2. Backtrack to A
3. A → C → E
4. Backtrack to C
5. C → F

53

Standard traversal methods struggle
with genome assembly challenges

Repeats, cycles, and ambiguous paths in De
Bruijn graphs complicate DFS and BFS.
Genome assembly requires visiting all overlaps
(edges) or all reads (nodes) systematically.
Specialized traversal methods, like Eulerian and
Hamiltonian paths, address these challenges.

54

Before the next class, you should

Finish and submit (due Jan 24)
Start (due Jan 31)
Work on and
Review Lectures , , , and for quiz (Jan 28)

P01B
P01C

CByte 01 CByte 02
02A 02B 03A 03B

Lecture 04A:
Genome annotation -

Foundations

Lecture 03B:
Genome assembly -

Methodology

Today Tuesday

Quiz 01

55

http://127.0.0.1:8000/assessments/projects/genomics/01B/
https://pitt-biosc1540-2025s.oasci.org/assessments/projects/genomics/01C/
https://pitt-biosc1540-2025s.oasci.org/cbytes/01/
https://pitt-biosc1540-2025s.oasci.org/cbytes/02/
https://pitt-biosc1540-2025s.oasci.org/lectures/02A/
https://pitt-biosc1540-2025s.oasci.org/lectures/02B/
https://pitt-biosc1540-2025s.oasci.org/lectures/03A/
https://pitt-biosc1540-2025s.oasci.org/lectures/03B/

