Computational Biology
(BIOSC 1540)

Lecture 03B

Genome assembly

o
Methodology -

g

University of
:J Pittsburgh,

Anhouncements

Assignments e Assignment PO1B is due Friday (Jan 24)
e Assignment PO1C is due next Friday (Jan 31)

Quizzes e Quiz 01 is next week (Jan 28) and will cover lectures 02A to 03B

CBytes e CByte 01 is live and will expire on Feb 1
e CByte 02 will be released Friday (Jan 24) and expire on Feb 7

Next reward: Checkpoint Submission Feedback

ATP until the next reward: 1,903

https://pitt-biosc1540-2025s.oasci.org/cbytes/01/
https://pitt-biosc1540-2025s.oasci.org/cbytes/02/
https://pitt-biosc1540-2025s.oasci.org/assessments/quizzes/01/
https://pitt-biosc1540-2025s.oasci.org/lectures/02A/
https://pitt-biosc1540-2025s.oasci.org/lectures/03B/
https://pitt-biosc1540-2025s.oasci.org/assessments/projects/genomics/01B/
https://pitt-biosc1540-2025s.oasci.org/cbytes/#advanced-training-points-atp

0O o Ul WD -

NNNNR R R RBR R BB &
N = O W00 U D WNRE OV

Quick homeworKk tip

When asking for five FASTQ entries, here is what it should look like

fastqg five =
@synthetic_read 1/f
TACGGCTAGGCATCTCGAGATCTGTGACGTTTCAGATCCCCTGCTGCGTGCGTTTGATGTCCAACTGTCGTACTCACGCCGGACGGGGAGTAACTTCTTTTCGAGCCGTAGTT
+
46:47287653825380557902185865586;11784536:8>:7946436;67:04>8671293:53991474581727927476120866:4;;441889567264523:
@synthetic_read 2/f
GACGATCGTAGCTCAGTCGGACCAACGACTCGCTGCTTACTGGAAGATCCTCGTAGACGGTTTTTTTGCGAAAGTACAGGCGACCCAGTACAAATCGGGATAGTGGTCACTT?
+
GGDIHIFGEHGGIGGIHGFGIIFIHFDEFEFCCFFIIHIGIEEFIEFFICDGFHICFEICGGFFEIEEFGIFGFIHIIBDGHIGHIIGGGHFGIEHIIIDITECAIHDHCEDI
@synthetic_read 3/f
CGTAGCTGACGTAGATTCGATTTAAGAAACGCAGATATGGACATTGTCGCCGTGCCTTTATATTCCACATATCGTGGTAATCATACCGGCATAGGGTCATGTCCGCAGCTGTC
+

1=9<<:7<9::=<2<<6;;=;2;<7;9=926:8;8A9:=>=<:A79;=>=; :==:<4::7<9?E4<9;;:97=<70@9;8?2@<7999:A9:=;6:2>:0@988A297=A>=Q:;¢
@synthetic_read 4/f
TACGGCTAGGCACGTTTTCAGCAATCACGCGTGAGAATGCAATACAGCTGAGTATAGGTGGCCGGGCGTACGTTTCTACGTGAGCATGTTTTTTTATTACAGAGTACCGGTAC
+

>:A@=@=<ABB><=:==?>@=><<<9=?3:>@CHD; ?=7:@?26G<8<W@?AEE<=?;<;C<66B3>>>>=8488<8>?@9>43>?A?A61:@8;:6@97;825=>7>8><1<8"
@synthetic_read 5/f
GTACGATCGTACCTGCGTACAAAACAGTTTCGGGGTCCAAACCACGCCTCAACTGTTCTCGGTTAGTACCGTAGCTACACTCGGTCTATCTGTCAGCTGCCGTTCATTCGAG(
+
78<8675<68;9;9<72;4==:689<;95=5;?276:57<16;:4@;9.=:1:;?2<49;89;0<>?6327778:8:518?27=79:6:<7><AQ@16:65<98:6<7446<;@9=¢

After today, you should have a better understanding of

Problem formulation of genome assembly

Why we need genome assembly

Genome assembly reconstructs a long DNA
sequence from short, error-prone reads, ensuring
as many reads fit into the final sequence

Assembly
algorithms

TACGATCGGATTACGCGTAGGCTAGCTTACGGACTCGATGTACGATCGGATTACG

Recap from DNA sequence (i.e., contig)

https://pitt-biosc1540-2025s.oasci.org/lectures/03A/

After today, you should have a better understanding of

Problem formulation of genome assembly

Assumptions

We make simplifying assumptions
to address challenges and make
assembly tractable

Reads originate from a single,
contiguous genome

If we had two sources of DNA

-+

Chance of overlap is likely, and it would be challenging
to differentiate the origin of each read

It dramatically simplifies our problem if we
assume only a single source of reads

Sequencing coverage is sufficient for
redundancy and error correction

Assume that we have

TACGATCGGATTACGCGTAGGCTAGCTTACGGACTCGATGTACGATCGGATTACGCGTAGG

Real sequencing errors can be fixed in high-coverage areas

Real SNPs can be confidently detected when all reads have the same base

What if your sequencing data does
not meet these assumptions?

This happens all the time in science!

If you more robust options are
available, using those may be required

If there is no other option, use the best
approach and disclose how this could
impact your results and interpretation

10

After today, you should have a better understanding of

Problem formulation of genome assembly

String manipulation in Python

11

Review: DNA sequences are
represented as strings in Python

A DNA sequence is simply a sequence of letters: XX
A, T, C, and G. In Python, we can represent this 1 readl = "ATCG"
2 read2 = "TCGA"

using quotation marks ("" or ' ').

read long = """

CGTAGCTGACGTAGATTCGATTTAAGAAACGCAGATATGGACATTGTCGCCGTGCCTTTATAT
TCCACATATCGTGGTAATCATACCGGCATAGGGTCATGTCCGCAGCTGTCCAACTATCGGTTA
ACGTTCCCCCTACTATCTCTGCGCGAGCCTAGAGTAAATCGATGAGTCTGAAGAACGCCTCAT
ATCTGCTGTATGCCCGCCGCGTGAACTCTCAGTATTCGCGAACACATTGGTCTTGCTATCCTC

GGTAAGGAAC

N oY Ol W N R

Comparing strings allows us to detect
similarities or differences between DNA reads

To compare strings, we can use the equality operator ==

000 o000

1 readl = "ATCG" 1 readl = "ATCG"

2 read2 = "TCGA" 2 read2 = "ATCG"

3 3

4 # Compare two strings 4 # Compare two strings

5 print(readl == read2) # Output: False 5 print(readl == read2) # Output: True

We can extract parts of a string
using indices in Python

Each character in a string has an index

0123
Example: "C" has index of 2 ATCG
00
Use square brackets [] to get a character by its index L read = "ATCG
2 print(read[0]) # Output: A
3 print(read[2]) # Output: C
o o
Use slicing with start:stop to get part of a string 1 print(read[0:2]) # Output: AT
2 print(read[l1l:3]) # Output: TC

Python does not include the stop index

14

Use a for loop to go through each
character one by one

O 00O J o Ol WD B

We can use loops to check every

read = "ATCG"

for char in read:
print(char)

position in a string

You can also slice inside of a
for loop with an index

read = "ATCG"
for i in range(len(read)):

print(read[i:])

O VW oo JdJOo O s WD -

=

generates integers from 0 until the
length of the read (in this case 4)

range(len(read))

15

Comparing parts of strings allows us to
find overlaps between DNA reads

Let’s find where read1l overlaps with read2

When i

000
1 readl = "ATCG"
2 read2 = "TCGA"
3
4 for i in range(len(readl)):
5 if readl[i:] == read2[:len(readl) - 1i]:
6 print(f"Overlap found: {readl[i:]}")
7 break
8
= 0:

readl[0:] gives us "ATCG" (the full string)
read2[:4] gives us "TCGA" (first 4 characters)
Comparison: "ATCG" == "TCGA"

Result: No match

16

Comparing parts of strings allows us to
find overlaps between DNA reads

00

1 readl = "ATCG"

2 read2 = "TCGA"

3

4 for i in range(len(readl)):

5 if readl[i:] == read2[:len(readl) - i]:
6 print(f"Overlap found: {readl[i:]}")
7 break

8

Nextisi = 1:

® readl[1l:] givesus "TCG" (excluding 'A")

e read2[:3] gives us "TCG" (first 3 characters)
e Comparison: "TCG" == "TCG"

e Result: Match found! &

Comparing parts of strings allows us to
find overlaps between DNA reads

Once we find the overlap, we

o
can merge the reads 1 readl = "ATCG"
2 read2 = "TCGA"
3
4 1 =1
We can use this approach of 5 |
. . . 6 merged = readl[:1] + read2
finding overlaps and merging 7 print(merged)
8

reads to form a contig

This idea of finding overlaps and merging motivates our
first assembly approach: the greedy algorithm

18

After today, you should have a better understanding of

The greedy algorithm for genome assembly

Overlaps and merges

19

The greedy algorithm builds genome assemblies
by iteratively merging the best overlaps

Algorithm
1. Check every possible read for the largest overlap.
2. Merge the two reads with largest overlap.
3. Repeat until no further merges are possible.

At the end, we have a set of contigs that
represent our original DNA sequence

20

The greedy algorithm minimizes
repeats by maximizing overlap

A superstring is a single string that

contains all reads as substrings The greedy algorithm aims to find
the shortest superstring, which

Example: ACGTAC is a superstring of o L
minimizes unnecessary duplication.

ACGT, CGTA, GTAC

The greedy algorithm focuses on selecting the best immediate option (i.e., local
optimal) at each step without full consideration of the overall global solution

This means the greedy algorithm will always make the best move
in the moment even if it gives the wrong final answer

21

Being greedy makes genome
assembly tractable

: Input strings !
ATTATAT CGCGTAC ATTGCGC GCATTAT ACGGCGC TATATTG GTACGGC GCGTACG ATATTGC
TATATTGC ATTATAT CGCGTAC ATTGCGC GCATTAT ACGGCGC GTACGGC GCGTACG
CGCGTACG TATATTGC ATTATAT ATTGCGC GCATTAT ACGGCGC GTACGGC

CGCGTACG TATATTGCGC ATTATAT GCATTAT ACGGCGC GTACGGC

CGCGTACGGC TATATTGCGC ATTATAT GCATTAT ACGGCGC

CGCGTACGGCGC TATATTGCGC ATTATAT GCATTAT

CGCGTACGGCGC GCATTATAT TATATTGCGC

CGCGTACGGCGC GCATTATATTGCGC

GCATTATATTGCGCGTACGGCGC

GCATTATATTGCGCGTACGGCGC

—>Superstring ——i

wultun v g Oh

Rounds of merging, one merge per line.
Number in first column = length of overlap merged before that round.

22

After today, you should have a better understanding of

The greedy algorithm for genome assembly

Breaking ties

23

Tie-breaking rules are necessary
when overlaps are identical

R1 R2 R3
Suppose we have these three reads
with a highest overlap of five TAACGT gl ol
We merge reads R2 and R3: TAACGT ACGTAAC

(and keep R1)
However, now we have a problem

TAACGT . TARCGT) erlap of 4
cetane | Overtapo ACGTAAC — craP @
ACGTAACGT TAACGTAAC
> 9
. ‘a .
Both have a length of 9, which Talk with your neighbors -y

one is the correct move? y
i 24

Tie breakers are a personal preference

First encountered, first merged The one you found first
................. nghestquahtybaseca"sUsesequencev\”thhlghestqua“ty
......................... H IghestcoverageWhICheverresmtsmmorecoverage
.............................. LOOkaheadDObOthandevaluateconsequences
Excmde .. BepEttyanddontmergethem

(separate contigs)

25

After today, you should have a better understanding of

The greedy algorithm for genome assembly

Trouble with repeats

26

Greedy assembly will incorrectly collapse
repeats If possible

Let's take a string and cyclically

permute it with k =6 a_long long long time

ng_lon _long_ a_long long_1l ong_ti ong_lo long t g long g time ng_tim
ng_time ng_lon _long a_long long_ 1l ong_ti ong_lo long_t g long
ng_time g long_ ng _lon a_long long_ 1l ong ti ong_lo long t

ng_time long_ti g long_ng lon a_long long_ 1l ong lo

ng_time ong_lon long ti g _long_ a_long long_1

ong_lon long_time g long_a_long long 1

long_lon long_time g_long_ a_long Then perform the greedy algorithm
long_lon g _long time a_long

long long time a_long

a_long_long_time

a_long _long_time We are missing a "_long". Why?

27

Longer reads and genome assembly
k=8 a_long_long_long_time

long lon ng_long__long lo g long t ong long g long 1 ong time a_long 1 _long ti long tim
long_time long_lon ng_long_ _long lo g long t ong_long g long 1 a_long_ 1 long ti
_long_time long_lon ng_long_ long lo g long t ong_long g long 1 a long 1

_long_time a_long_lo long lon ng long g long t ong long g long 1

_long_time ong_long_ a_long_lo long_lon g long t g long 1

g long time ong_long_a long lo long lon g long 1

g long time ong _long a_long lon g long 1

long_time ong_long 1 a_long_lon ,
f;-long-time 3 %gng %gng 1 - We get the correct string back, but how

a_long_long long_time did increasing our k fix this?
a_long_long_long_time

By having one read span all three "long"s, (i.e., :
. . a_long long long time
the repeating region) we prevented a collapse

g long 1
Remember: This is why long sequencing reads :

are very helpful in resolving repeats! 28

After today, you should have a better understanding of

De Bruijn graphs and their role in assembly

K-mers

29

The greedy algorithm provides insights but is
rarely used in modern genome assembly

Finding overlaps between all reads
scales poorly with genome size

Full pairwise comparisons between reads require O(n2) operations

where n is the number of reads

Worse:
Oty Exponental- S Quadratic - O(n2) As our number of reads
increases, our time to find

overlaps dramatically increases

However, the number of reads
Logarifimie = Olpatm)) also improves our assembly

computations

Constant - O(1)

Input Size n

31

k-mers break reads into manageable,
fixed-length pieces

Instead of comparing whole sequences, A k-mer is a substring of length &
we can compare k-mers! extracted from a sequence

Example: For the sequence ATCGT, the 3-mers
are ATC, TCG, CGT.

By decomposing reads into k-mers, we can:

e Represent sequences as collections of overlapping k-mers.

e Avoid comparing entire reads by focusing on k-mer matches.

e Use fixed-length k-mers to tolerate sequencing errors in overlaps.
e Number of reads does not change number of k-mers

32

Building k-mers from a string

Spectrum with k=3

1. Slice first k characters
2. Shift right one character
3. Repeat

GGCGATTCATCG

GGC
GCG
CGA
GAT
ATT
TTC
TCA
CAT
ATC
TCG

All 3-mers

33

k-mers are robust to sequencing errors

Sequencing errors affect only a few k-mers in a read, not the entire sequence.

Even if a single read has errors, most k-mers will match correctly to others.

Longer k-mers provide specificity, while shorter k-mers ensure sensitivity.

Read: GCGTATTACGCGTCTGGCCT (20 nt)

GCGTATTA: 8

CGTATTAC: 8
GTATTACG: 9
TATTACGC: 9
ATTACGCG: 10
TTACGCGT: 16
TACGCGTC: 11
ACGCGTCT: 11
CGCGTCTG: 10
GCGTCTGG: 190
CGTCTGGC: 11
GTCTGGCC: 9
TCTGGCCT: 8

times each 8-mer
occurs in the reads.

8-mers: “k-mer count profile”

All 8-mer counts are near
average, suggesting read is
error-free

GCGTACTACGCGTCTGGCCT

GCGTACTA: 1
CGTACTAC: 2
GTACTACG: 1
TACTACGC: 1
ACTACGCG: 2
CTACGCGT: 1
TACGCGTC: 9
ACGCGTCT: 8
CGCGTCTG: 16
GCGTCTGG: 16
CGTCTGGC: 11
GTCTGGCC: 9
TCTGGCCT: 8

k-mer count profile has
Below average corres ponding stretch of
below-average counts

Around average

34

After today, you should have a better understanding of

De Bruijn graphs and their role in assembly

Building graphs

35

Graphs is a data structure for drawing
relationships between items

O

Node

Represents a connection

Represents a single entity (possibly with a direction)

e Person e Instagram follower
. Location e Flights
e Protein e Protein-protein interaction

e Sequencing read e Sequence overlap

36

Genome assembly uses direct edges to
specify overlap and concatenation

Let's build a directed multigraph: "tomorrow and tomorrow and tomorrow"

1. Each unique k-mer is a node
2. Add directed edges for each
overlap and concatenation

K-mer is a substring
of length k

)

tomorrow and

—/

(We will cheat here and write
down just unique words)

37

Build a De Bruijn graph with k-1 nodes

5 3
Step 1: Build k-mers AATG ATGG TGGG
Let'suse k=4 GGCG GCGT CGTA

Step 2: Take left and right k-1 mer and make two connected nodes
Step 3: Repeat

AATG TGGG GCGT

" \" 7/ \ 7/ \

AAT — ATG—TGG— GGC — GCG — CGT — GTA

N/ N/ \ /

ATGG GGCG CGTA

38

Building De Bruijn graphs with a read

Build a De Bruijn graph with k =3

CGT TAA AAT
— GT = TA = —
GTA LD
AAA

De Bruijn graphs with multiple reads

Read 1 Let' g ¢ Read 2
et's use nodes o 5' CGTAAAT 3

length 4

Frist, build the De Bruijn graph for

Add edges and any new k-mers from Read 2

<« T

AAT ATG TGG GGC GCG CGT GTA—TAA — AAA
N A

Note: This is a circular genome

40

AAT

Another example, but not circular

Read 1 Read 2 Read 3
5' CGTAAAG 3' 5' TAAAGGCGAA3'
CGA — GAA

— 7 — —
ATG—TGG— GGC GCG CGT GTA—TAA — AAA — AAG

T~ U}

41

We can add weights to edges
Instead of drawing multiple edges

Read 1 Read 2 Read 3
5' CGTAAAG 3' 5' TAAAGGCGAAS3'

1
1 CGA—GAA

1 1 1 2 I 2 1 2 2
AAT — ATG —TGG—> GGC — GCG —> CGT — GTA—TAA —> AAA —> AAG

T~ 4

1

42

Another (another) example, but not circular

TACAGATT AGATTAC TACCGG GGATTA

De Bruijn graphs is one of the most missed questions
on assessments, let's get some practice w’

The solution is on the next slide (no peeking!) i

Another example, but not circular

TACAGATT AGATTAC TACCGG GGATTA

GGAT
Y —m
TACA—>ACAG—™CAGA—AGAT— GATT ATTA TTAC
N A N A A

TACC — ACCG — CCGG

44

After today, you should have a better understanding of

De Bruijn graphs and their role in assembly

Characteristics

45

CGOCG

Maternal

<
GTAGTCTCGGCATATGCGCCG ﬂﬂb

GTAGTCTCGGTATATGCGCCG

Paternal

GTAGT

46

Tips are good starting points of contigs if

they have high coverage _
"Ti p " (& _ AACTUGT

Islands are reads we couldn't merge (" 4l

TCATICT

lllslandu L | \ {'.Z

[] cle JHACT Sl Gacta pmmp— A s
(/g';’ 24

'.{;f'l."r

r;""'k._

AeJ

AN TGCAACG

GGGACTC

CAGCTTC

GAGAAAA

AAL
ATTT
m
GTATITT
IAACTIC
CAACGOC AT
—— ‘: :
et [CGAACTT
AACOOOC
GRERIER
ACGGOCA GAACG - GAACT
RS e
Aa ,
COAAC -
@ :
“AAT i

VS GOTTOTG
— fl GOACGIA WROGCAA W#‘ a— —
GGGACTH 3 m TTAR !

TITGOCC

GOGGEGTT

GATATIC

TAGCRGE:

47

After today, you should have a better understanding of

De Bruijn graphs and their role in assembly

Graph data structures in Python

48

Graph representation in Python

Adjacency lists can be used to
computationally represent graphs

< oubdswNhe~ O

Perhaps conceptually helpful for CByte 02!

49

After today, you should have a better understanding of

Graph traversal methods for extracting contigs

50

De Bruijn graphs are traversed to extract
contiguous genome seguences

Traversal is the process of finding contigs (continuous DNA sequences)
by walking through the De Bruijn graph

GGAT
Y —m—
TACA—>ACAG—™ CAGA—>AGAT—™ GATT ATTA TTAC
N A N A N A

TACC — ACCG — CCGG

Nodes: Represent k-mers derived from sequencing reads.

Edges: Represent k-mer overlaps between nodes.

Standard traversal methods, such as breadth-first search (BFS) and depth-first
search (DFS), are building blocks for more advanced assembly techniques.

51

DFS explores as far as possible along
each branch before backtracking

Imagine exploring a maze with this strategy:

e Keep walking forward until you hit a dead end
e Backtrack only when necessary
e Take the first unexplored path you see

A
. /\
DFS Traversal from A (one possible order): B C
1. A — B — D (follow first path to end) /N
2. Backtrack to A D E F

3.A—->C—E
4. Backtrack to C
5, C—>F

52

BFS explores all neighbors of a node
before moving deeper into the graph

Imagine you're dropping a pebble in a pond:

e First, you see ripples reach nearby points

e Then, they spread outward in circles A
e Each "wave" represents a level of exploration / \
B C
DFS Traversal from A (one possible order): / /\
D E F

1. A— B — D (follow first path to end)
2. Backtrack to A

3.A—-C—E

4. Backtrack to C

5.C—>F

53

Standard traversal methods struggle
with genome assembly challenges

e Repeats, cycles, and ambiguous paths in De
Bruijn graphs complicate DFS and BFS.

e Genome assembly requires visiting all overlaps
(edges) or all reads (nodes) systematically.

e Specialized traversal methods, like Eulerian and
Hamiltonian paths, address these challenges.

54

Before the next class, you should

Lecture 03B: Lecture 04A:
Genome assembly - Genome annotation -
Methodology Foundations

Quiz 01
‘ --------------------------- -‘
Today Tuesday

¢ Finish and submit PO1B (due Jan 24)

e Start PO1C (due Jan 31)

e Work on CByte 01 and CByte 02

e Review Lectures 02A, 02B, 03A, and 03B for quiz (Jan 28)

55

http://127.0.0.1:8000/assessments/projects/genomics/01B/
https://pitt-biosc1540-2025s.oasci.org/assessments/projects/genomics/01C/
https://pitt-biosc1540-2025s.oasci.org/cbytes/01/
https://pitt-biosc1540-2025s.oasci.org/cbytes/02/
https://pitt-biosc1540-2025s.oasci.org/lectures/02A/
https://pitt-biosc1540-2025s.oasci.org/lectures/02B/
https://pitt-biosc1540-2025s.oasci.org/lectures/03A/
https://pitt-biosc1540-2025s.oasci.org/lectures/03B/

